
IEEE DESIGN AND TEST, JULY 2020 1

Verification Approaches for Learning-Enabled
Autonomous Cyber-Physical Systems
Hoang-Dung Tran, Member, IEEE, Weiming Xiang, Senior Member, IEEE, Taylor T.

Johnson, Member, IEEE

Abstract—This paper presents an overview survey of verification techniques for autonomous systems, with a focus on safety-critical
autonomous cyber-physical systems (CPS) and subcomponents thereof. Autonomy in CPS is enabled by recent advances in artificial
intelligence (AI) and machine learning (ML) through approaches such as deep neural networks (DNNs), embedded in so-called
learning enabled components (LECs) that accomplish tasks from classification to control. Recently, the formal methods and formal
verification community has developed methods to characterize behaviors in these LECs with eventual goals of formally verifying
specifications for LECs, and this article presents a survey of many of these recent approaches.

Index Terms—verification, machine learning, autonomy, cyber-physical systems

F

1 INTRODUCTION

A RTIFICIAL intelligence (AI) is in a renaissance, and AI
methods, such as machine learning (ML), are now at

a level of accuracy and performance to be competitive or
better than humans for many tasks. Deep neural networks
(DNNs) in particular are increasingly effective at recognition
and classification tasks. For instance, much of the sensing,
estimation, and fusion of data that enables applications such
as autonomous driving [1], aircraft collision avoidance [2]
and other autonomous cyber-physical systems (CPS) [3]
increasingly relies on DNNs and related ML techniques.
However, this progress comes at significant risk when these
methods are deployed in operational safety-critical systems,
especially those without direct human supervision. Notably,
it has been observed that neural networks can react in
unexpected and incorrect ways to even slight perturbations
of their inputs [4]. Therefore, there is a need for methods
beyond testing [5] that can provide formal guarantees about
the behavioral properties and specifications of autonomous
CPS with learning-enabled components (LECs), especially
for the purpose of safety assurance [6]. There are two main
streams of verification for intelligent systems with machine
learning components. The first one focuses on the correct-
ness of only the learning components while the second
one aims at proving the correctness of the whole system
in which the learning-based component interacts with the
physical dynamics of the system. As one of the most impor-
tant and prevalent AI/ML techniques, this paper specifically
surveys the current state-of-the-art for safety verification of
autonomous CPS systems with neural network controllers.

Artificial neural networks are used in systems that in-
troduce machine learning components to resolve complex
problems. This can be attributed to the impressive ability

• Hoang-Dung Tran and Taylor T. Johnson are with the Department of
Electrical and Computer Science, Vanderbilt University, Nashville, TN,
37235.
Weiming Xiang is with the School of Computer and Cyber Sciences,
Augusta University, Augusta, GA, 30912.
E-mail: trhoangdung@gmail.com (H.-D. Tran), wxiang@augusta.edu (W.
Xiang), taylor.johnson@gmail.com (T.T. Johnson)

of neural networks to approximate complex functions as
shown by the Universal Approximation Theorem [7]. Neu-
ral networks are trained over a finite amount of input and
output data, and are expected to generalize said data and
produce desirable outputs for the given inputs and even
for previously unseen inputs. The data-driven nature and
lack of efficient methods for analysis of neural networks
leads to, in most cases, the treatment of neural networks
as black boxes with no assurance in safety. However, due
to the rapid development artificial intelligence inspired
applications, neural networks have recently been deployed
in several safety-critical systems, such as autonomous sys-
tems [1], [3], and aircraft collision avoidance procedures [2].
Regrettably, it has been observed that neural networks can
react in unexpected and incorrect ways to even slight per-
turbations of their inputs [4]. Thus, methods are needed
that can provide formal guarantees about the behavioral
properties of neural networks, especially for the purpose
of safety assurance [6].1

2 VERIFICATION OF NEURAL NETWORKS

Verifying neural networks is a difficult problem, and it has
been demonstrated that validating even simple properties
about their behavior is NP-complete [10]. The difficulties
encountered in verification mainly arise from the pres-
ence of activation functions and complex structures (i.e.,
an interconnected group of nodes, inspired by biological
neurons) of neural networks. Moreover, neural networks
are large-scale, nonlinear, non-convex, and often incompre-
hensible to humans so that traditional verification tools
are not applicable for neural networks. The action of a
neuron is described by the activation function in the form
of yi = f(

∑n
j=1 ωijxj + θi), where xj is the jth input of

1. This paper summarizes an extended survey of work in this area [8].
A related survey in the area is [9]. Source code for many of the
methods described are available in our NNV tool (https://github.
com/verivital/nnv), and other methods corresponding to [9] are also
available (https://github.com/sisl/NeuralVerification.jl/).

https://github.com/verivital/nnv
https://github.com/verivital/nnv
https://github.com/sisl/NeuralVerification.jl/


IEEE DESIGN AND TEST, JULY 2020 2

the ith neuron, ωij is the weight from the jth input to
the ith neuron, θi is called the bias of the ith neuron, yi
is the output of the ith neuron, and f(·) is the activation
function. Typically, the activation function is either the rec-
tified linear unit, logistic sigmoid, hyperbolic tangent, the
exponential linear unit, or another linear function. In gen-
eral, existing methods for neural network verification can be
categorized into geometric (reachability) methods, mixed-
integer linear programming (MILP) methods, satisfiability
(SAT)-based and satisfiability modulo theory (SMT)-based
methods, optimization-based methods, and others.

2.1 Geometric and Reachability Methods
To circumvent the difficulties brought by the nonlinearities
present in the neural networks, many recent results focus on
activation functions of the form f(x) = max(0, x), known
as Rectified Linear Units (ReLUs). Taking advantage of
the piecewise linear feature of ReLUs and considering the
input as polyhedra or special classes of polyhedra, such as
zonotopes or hyper-rectangles, the verification process can
be turned into a sequence of operations on polyhedra. For
instance, in [11], the computation process involves standard
polytope operations, such as intersection and projection,
and all of these can be computed by employing sophisti-
cated computational geometry tools, such as MPT3 [12]. The
essence of the approach is to be able to obtain an exact out-
put set with respect to the input set. However, the number
of polytopes involved in the computation process increases
exponentially with the number of neurons in its worst
case performance which makes the method not scalable to
neural networks with a large number of neurons. Within the
polyhedra computation framework, further developments
have been made in the recent tool NNV [13], [14], [15],
[16], [17] through using star sets, an efficient representation
for convex sets, to enhance the scalability with respect to
polyhedral operations. Due to the parallelizability of the
approach, parallel computing techniques can be employed
to speed up the computation to some extent.

In the framework of zonotopes, a verification engine for
ReLU neural networks called AI2 was proposed in [18]. In
this approach, perturbed inputs and safety specifications
are abstracted as zonotopes, and reasoning about their
behaviors use operations over zonotopes. The framework
AI2 is capable of handling neural networks of size up
to 50,000 neurons and, in particular, their approach has
had success dealing with convolutional neural networks
(CNNs). The star set approach within NNV has also recently
been extended to CNNs using an extension of star sets to
the computer vision domain called ImageStars [15], applied
to large classification networks such as VGG16 and VGG19
that have tens-to-hundreds of millions of parameters [19].
Another special class of polyhedra that are called interval
sets or hyper-rectangles is also considered for verification
problems. These interval-based methods perform reacha-
bility analysis as the propagation of interval sets across
hidden layers and eventually derive the output intervals.
Specification-guided methods have been developed to pro-
vide an adaptive partitioning method for the input space
[20]. By making use of the information of specification,
unnecessary partitioning can be avoided so that the compu-
tational complexity can be reduced significantly. In [21], an

3

Input 

Set𝒳
Output 

Set 𝒴

Property P

Fig. 1. Illustration of neural network reachability, where the output
reachable set of a mathematical function F : Rn 7→ Rm representing
the neural network’s behavior under a set of inputs X is defined and
computed in an exact or overapproximative manner. If F (X ) = Y ⊆ ¬P,
then safety property ¬P holds, while if P ∩ Y 6= ∅, then unsafe states
may be reached.

interval symbolic method is developed to compute rigorous
bounds for outputs of neural networks. Their approach is
easily parallelizable and makes use of symbolic interval
analysis in order to minimize overestimation (conservative-
ness). The authors implement their approach as part of
ReluVal, a system for checking the security properties of
ReLU-based neural networks.

2.2 MILP Methods

The use of binary variables to encode piecewise linear func-
tions is standard in optimization [22]. In [23], the constraints
of ReLU functions are encoded as an MILP. Combining
output specifications that are expressed in terms of linear
programming (LP), the verification problem for output set
eventually turns to the feasibility problem of MILP. For layer
i, the MILP encoding is given as

Ci = {x[i]j ≥W
[i]
j x[i−1] + θij ,

x
[i]
j ≤W

[i]
j x[i−1] + θij +Mδ

[i]
j ,

x
[i]
j ≥ 0,

x
[i]
j ≤M(1− δ[i]j ) | j = 1 . . .

∣∣∣L[i]
∣∣∣} (1)

where M is sufficiently large so that it is larger than the
maximum possible output at any node. A similar MILP
problem is formulated in [24], where the authors conduct a
robustness analysis and search for adversarial examples in
ReLU neural networks. It is well known that MILP is an NP-
hard problem and, in [25], [26], the authors elucidate signif-
icant efforts for solving MILP problems efficiently to make
the approach scalable. Their methods combine MILP solvers
with a local search yielding a more efficient solver for range
estimation problems of ReLU neural networks than several
other approaches. Basically, a local search is conducted us-
ing a gradient search and then a global search is formulated
as MILP. Instead of finding the global optimum directly, it
performs the search seeking values greater/smaller than the
upper/lower bound obtained in the preceding local search.
This is the primary reason for the computational complexity
reduction. This MILP-based approach is integrated in a tool
called Sherlock [27]. In [28], an MILP encoding scheme is
used for a class of neural networks whose input spaces are
encoded as binaries. This MILP encoding has a similar flavor
to the other encodings present in the research literature for
non-binarized networks. In their framework, since all the
inputs are integer values, the real-valued variables can be



IEEE DESIGN AND TEST, JULY 2020 3

rounded so that they can be safely removed, resulting in
a reformulated integer linear programming (ILP) problem
that is smaller in comparison to the original MILP encoding.
With the ILP encoding, an SAT solver is utilized in order to
reason about the behavior of a binarized neural network of
hundreds of neurons.

2.3 Satisfiability and SMT Methods
In [10], an SMT solver called Reluplex is developed. An
algorithm, that stems from the Simplex algorithm for lin-
ear functions, for ReLU functions is proposed. Due to the
piecewise linear feature of ReLU functions, each node is di-
vided into two nodes. Thus, in their formulation, each node
consists of a forward-facing and backward-facing node. If
the ReLU semantics are not satisfied, two additional update
functions are given to fix the mismatching pairs. Thus,
the search process is similar to the Simplex algorithm that
pivots and updates the basic and non-basic variables with
the addition of a fixing process for ReLU activation pairs.
This method is applied on a deep neural network imple-
mentation of a next-generation airborne collision avoidance
system for unmanned aircraft (ACAS-X), which has been
used as a benchmark for a number of successive works. In
[29], Scheibler et al. use bounded model checking (BMC) to
create formulas that are solved using the SMT-solver iSAT3,
which is able to deal with transcendental functions, such
as exp and cos (that exist in various activation functions)
that frequently appear in neural network controllers and
plant models. Although the verification framework is rigor-
ously developed, the verification problem suffers scalability
barriers due to the curse of dimensionality and state-space
explosion problems. An approach for finding adversarial
inputs using SMT solvers that relies on a layer-by-layer
analysis is presented in [30]. The work focuses on the robust-
ness of a neural network where safety is defined in terms
of classification invariance within a small neighborhood of
one individual input. An exhaustive search of the region is
conducted by employing discretization and propagating the
analysis layer by layer. In a similar manner, a recent paper,
proposed by Ruan et al. [31], generalizes the local robustness
criterion into a global notion on a set of test examples.

An early software tool in this area, called Planet, was
developed based on the MILP verification approaches [32].
This LP-based framework combine SAT solving and linear
over-approximation of piecewise linear functions in order to
verify ReLU neural networks against convex specifications.
Given the output of a ReLU denoted by d and the input
c ∈ [l, u], the relationship between c and d can be approxi-
mated by the linear constraints d ≥ 0, d ≥ c, and d ≥ u c−l

u−l .
Based on the LP problem formulation, additional heuristic
algorithms were developed to detect infeasibility and imply
phase inference faster. Pulina et al present an abstraction-
refinement and SMT-based tool for verifying feed-forward
neural networks. Their scheme is based on encoding the
network into a boolean satisfaction problem over linear
arithmetic constraints [33].

2.4 Other Optimization-Based Methods
As some of the earliest papers for neural network verifica-
tion, in [34], [35], a piecewise-linearization of the nonlinear

activation functions is used to reason about their behav-
ior. In this framework, the authors replace the activation
functions with piecewise constant approximations and use
the bounded model checker hybrid satisfiability (HySAT)
[36] to analyze various properties. The authors highlight the
difficulty of scaling this technique and, currently, are only
able to tackle small networks with at most 20 hidden nodes.

In [37], a simulation-based approach was developed,
which used a finite number of simulations/computations
to estimate the reachable set of multi-layer neural networks
in a general form. Despite this success, the approach lacks
the ability to resolve the reachable set computation prob-
lem for neural networks that are large-scale, non-convex,
and nonlinear. Still, simulation-based approaches, like the
one developed in [37], present a plausibly practical and
efficient way of reasoning about neural network behavior.
The critical step in improving simulation-based approaches
is bridging the gap between finitely many simulations and
the essentially infinite number of inputs that exist in the
continuity set. A critical concept that is introduced in the
work is called maximal sensitivity, which measures the
maximal deviation of outputs for a set of inputs suffering
disturbances in a bounded cell. The output set of the neural
network can be over-approximated by the union of a finite
number of reachtubes computed using a union of individual
cells that cover the input set. Thus, verification of a network
can be done by checking the existence of intersections of the
estimated reachable set and safety regions. This approach
has been extended to allow for the reachable set estimation
and verification of nonlinear autoregressive-moving aver-
age (NARMA) models in the form of neural networks [38] as
well as closed-loop system verification with the help of the
state-of-the-art reachability tool for hybrid systems dealing
with the plant dynamics [39].

In a recent result [40], an improved simulation-guided
method is developed to reduce computational complexity.
Unnecessary input partitions are avoided as the correspond-
ing partition behaviors upon input space are guided by
simulations instead of uniform partition. In particular, it
is applicable to a variety of neural networks regardless of
the specific form of the activation functions. Given a neural
network, there is a trade-off between the precision of the
reachable set estimation and the number of simulations used
to execute the procedure. In addition, since the approach
executes in a layer-by-layer manner, the approximation
error will accumulate as the number of layers present in
the network increases. In this case, more simulations are
required at the expense of increasing the computational cost.
A novel approach for neural network verification based on
optimization duality has been developed [41]. The verifi-
cation problem is posed as an optimization problem that
tries to find the largest violation of a property related to the
output of the network.

2.5 Other Methods

There exists a rich literature of other methods for neural
network verification [8], [9], but we highlight a few. A
comparison of the verification approaches mentioned above
can be found in [42]. Additionally, the authors present
a novel approach for neural network verification called



IEEE DESIGN AND TEST, JULY 2020 4

Branch and Bound Optimization. This approach adds one
more layer behind the output layer cy − b to represent the
linear property cy > b that we wish to verify. If cy − b > 0,
it means that the property is satisfied, otherwise it is unsat-
isfiable. Thus, the verification problem is converted into a
computation of the minimum or maximum value of the out-
put of the neural network. By treating the neural network
as a nonlinear function, model-free optimization methods
are utilized to find optimal solutions. In order to have a
global optimum, the input space is also discretized into sub-
regions. This approach is not only applicable to ReLU neural
networks, but the model-free method allows the approach to
be applied to neural networks with more general activation
functions. However, despite its generalization capabilities,
in the model-free framework, there is no guarantee that the
algorithm will converge to a solution.

Cheng et al. studied the verification of Binarizied neural
networks (BNNs) [43]. The forward propagation of input
signals is reduced to bit arithmetic. The authors argue that
the verification of BNNs can be reduced to hardware veri-
fication and represents a more scalable problem than tradi-
tional neural network verification. A randomized approach
for rigorously verifying neural networks in safety-critical
applications has been developed [44]. In an effort to miti-
gate challenges related to the curse of dimensionality, the
authors make use of Monte Carlo methods to estimate the
probability of neural network failure. However, although
Monte Carlo methods are more efficient than methods that
deterministically search through hyper-rectangular input
spaces, they are probabilistic in nature. The authors further
demonstrate that although the number of samples needed
to guarantee this may be large, it is not as prohibitive as
other methods.

In addition to neural network verification, there are also
results on falsification and testing of neural networks. Sev-
eral ideas for integrating semantics into adversarial learn-
ing have been explored, including a semantic modification
space and the use of more detailed information about the
outputs produced by machine learning models [45]. In work
by Tsui Weng et al. [46], an attack independent robustness
metric against adversarial examples for neural networks is
described. Their approach converts the robustness analysis
into a local Lipschitz constant estimation problem and uses
Extreme Value Theory for efficient solving. In [47], an au-
tomatic test case generator is presented that leverages real-
world changes in driving conditions like rain, fog, lighting
conditions, etc. The tool, called DeepTest, systematically
explores different parts of the deep neural network logic
by generating test inputs that maximize the number of
activated neurons. An improved version of the tool, called
DeepXplore, is proposed in [48], which is the first efficient
whitebox testing framework for large-scale deep learning
systems.

3 VERIFICATION AND FASIFICATION OF NEURAL
NETWORK CONTROL SYSTEMS

Verification and falsification of feedback neural network
control systems (NNCS) have become an emerging re-
search topic recently. Unlike verification of a neural network
where the specifications of interest are usually defined as

4

Input set:

3 inputs, 2 outputs, 7 hidden layers of 7 

neurons each.

Fig. 2. Example output reachable set computation for a neural network
with 3 inputs, 2 outputs, and 7 hidden layers with 7 neurons each, where
all activation functions are ReLUs and all parameters of the network
(weights, biases) are chosen randomly. The input set I = {x | ‖x‖∞ ≤
1, x ∈ R3} is a cube and convex, while the output set shown is non-
convex, represented as the union of the different colored polygons.

predicates over the outputs of the network, in NNCS, the
specification are usually defined based on the states of the
plant controlled by a neural network controller. Notably, the
behavior of the whole feedback control system depends not
only on the behavior of the neural network controller but
also the system’s physical dynamics which is usually de-
scribed in terms of ordinary differential equations (ODEs).
The interaction between the nonlinear neural network con-
troller and the physical dynamics makes the behavior of the
whole system complicated and difficult to analyze. To over-
come this challenge, several methods have been proposed
recently to verify system-level safety properties of NNCS
with feed-forward neural network controllers.

The polyhedron-based approach [11] has been extended
for safety verification of NNCS with linear and discrete dy-
namics [49]. Recently, a hybridization approach has been
proposed in the Verisig tool [50] that transforms a NNCS to
an equivalent nonlinear hybrid system that can be verified
using Flow* [55], a verification tool for nonlinear hybrid sys-
tems. This approach applies for neural network controllers
with smooth activation functions, such as Sigmoid and
hyperbolic tangent (Tanh). Sound and complete satisfiability
modulo convex (SMC)-based approaches for formal verifi-
cation of NNCS have been developed, in which the closed-
loop neural network control system with linear and discrete
dynamics is encoded as monotone SMC formulas that were
formally verified by SMC decision procedures [51]. In [52], a
new abstraction method has been proposed for NNCS verifi-
cation in which an “local” Taylor model over-approximation
of neural network controller was obtained and integrated in
Flow* [55] to compute a tight over-approximation reachable
set of NNCS. The advantage of this method is that it
fast and scalable and more importantly, it is proposed to
reduces significantly over-approximation errors in reachable
set computation process. In [54], a new reachability ap-
proach based on Bernstein polynomials has been proposed
to verify NNCS with more general of activation functions.
This approach can control the over-approximation error in
the analysis, however, the cost of being more accurate is
increased computation time.

An extension of the star-based reachability analysis
method for neural networks has been implemented in
NNV [53] to verify safety properties of NNCS. The star set
method can deal with different activation functions, such
as ReLU, Satlin, Sigmoid, and Tanh, as well as different



IEEE DESIGN AND TEST, JULY 2020 5

Approaches Plant Dynamics Discrete/Continuous Activation Function
Polyhedron-based [49] Linear Discrete ReLU
Verisig [50] Linear, Nonlinear Discrete, Continuous Sigmoid, Tanh
SMC-based [51] Linear Discrete ReLU
Sherlock [52] Linear, Nonlinear Discrete, Continuous ReLU
NNV [14], [16], [53] Linear, Nonlinear Discrete, Continuous ReLU, Satlin, Sigmoid, Tanh
ReachNN [54] Nonlinear Continuous ReLU, Sigmoid, Tanh

TABLE 1
Reachability and bounded-model checking approaches for neural network control system verification.

types of dynamics, i.e., linear or nonlinear in discrete or
continuous time domains. The star set method can per-
form exact and complete analysis of NNCS with linear
discrete dynamical plants and neural network controllers
with ReLU/Satlin activation functions. The extended star
set method has successfully verified safety properties of Ad-
vanced Emergency Braking Systems (AEBS) and Adaptive
Cruise Control Systems (ACCS), in which the size of the
neural network controller ranges from fifty to two hundreds
neurons.

A summary of recent verification methods is given in
Table 1, which focuses on reachability methods that can
provide finite time-horizon guarantees, although there also
exist approaches based on barrier certificates (a ”continu-
ous” form of the classical inductive invariance proof rule)
that may provide infinite time-horizon guarantees [56]. Al-
though verification for NNCS provides sound guarantees
for safety, it is usually computationally expensive and suf-
fers from scalability challenges. Importantly, due to scala-
bility limitations, current state-of-art verification techniques
cannot deal with NNCS with perception components. In this
case, falsification approach plays an important role since
it is more scalable and applicable than the verification ap-
proaches. Particularly, in [57], a compositional falsification
framework for CPS with machine learning components has
been developed. In this framework, a temporal logic falsifier
cooperates efficiently with a machine learning analyzer to
find falsifying executions of the system. The effectiveness of
the proposed framework was shown via the falsification of
AEBS.

4 CHALLENGES AND FUTURE DIRECTIONS

Scalability vs. Conservativeness. Scalability is still a major
challenge for most existing verification techniques. It has
been shown that the verification time using exact analy-
sis increases exponentially [10], [14]. Particularly, besides
the size of the network, the input set is an important
factor affecting the verification time of the exact analysis
method. Generally, a large network or a large input set
requires more verification time. To improve scalability, a
large body of research in neural network verification relies
on over-approximation methods. Some recent approaches
[58], [59] are optimistic about the scalability of their meth-
ods. However, it has been shown that these methods only
can deal with a small input set due to the explosion of
over-approximation error in the analysis, which leads to
conservative reachable sets [14]. In the future, we believe
that new hybrid techniques that can combine the advan-
tages of exact and over-approximate analyses are needed

to improve both scalability and conservativeness in neural
network verification.

Formal specifications and compositional verification.
While a large body of research focuses on verifying neural
networks and NNCS, fewer works investigate specification
formalization for such systems [60], [61], [62]. For neu-
ral network verification, most current methods investigate
safety and robustness properties, which can be specified
as input to output relations of neural networks as illus-
trated in Figure 1 [60], [62]. For NNCS verification, exist-
ing approaches deal with safety specifications defined as
predicates over the states of the plant model. In the real-
world, learning-enabled CPS are complex in which several
LECs, such as perception components and neural network
controllers, interact with each other and the physical world,
such as between a physical plant and its environment.

Defining meaningful system-level specifications for the
whole system is relatively straightforward (such as colli-
sion avoidance), but the implications and constraints such
system-level specifications place on LECs, especially those
for perception, is non-trivial and needs to be investigated
deeply. New specification languages for learning-enabled
CPS are crucial to formally define the behavior of the
systems and their subcomponents, and equally important,
is defining libraries of specifications for meaningful percep-
tion problems, such as classification, semantic segmentation,
and object detection/localization. One promising direction
is to utilize hyperproperties for specifying robustness to
adversarial perturbations [60], [63]. A further challenge,
particularly related to perception, is not only in defining
specifications, but in evaluating specifications with respect
to meaningful environmental scenarios and data. This chal-
lenge is fundamentally different than the typical approach
for verification of closed-loop systems, where a plant model
generates new inputs for a controller, and instead requires
verification with respect to pre-recorded environmental data
(such as images/video) or generation thereof. This is partly
because it is unreasonable to expect formal models for the
environment in which an NNCS operates, and at best, gen-
erative models such as GANs and realistic simulators may
exist, beyond pre-recorded real-world data. Altogether, it
is unclear under what circumstances compositional specifi-
cation and verification for learning-enabled CPS are achiev-
able, such as by verifying individual LECs and attempting to
compose guarantees of individual components into system-
level guarantees [64].

Runtime verification for NNCS. Existing verification
techniques for NNCS primarily operate offline and are to be
performed during the design-time of a system. In practice,
it is useful to have techniques that can monitor, if not verify,
NNCS specifications online. Based on the online verification



IEEE DESIGN AND TEST, JULY 2020 6

information, a system can perform some intelligent actions
to avoid upcoming difficult or catastrophic circumstances,
such as hitting an obstacle or colliding with another system,
for instance with Simplex architecture approaches [65].

Robust and safe learning. All techniques surveyed in
this paper deal with an existing network or NNCS. In
the future, new learning methods that integrate verification
techniques in the training process to enhance the robustness
of a network or the safety of a NNCS are essential for ap-
plying neural networks in safety-critical applications, such
as in recent approaches for safe reinforcement learning.

Benchmarking and Standardization. A major limiting
factor in the development of this area is a lack of stan-
dardization for formal models and specifications. There
are several ongoing initiatives that aim to address this
shortcoming to enable easier, fairer, and more scientific
comparisons between the existing verification methods, as
well as future ones. Due to this lack of standardization,
this article does not make specific claims relating to which
methods are most appropriate or scalable, as such answers
are not yet known. For the open-loop verification problem
(Section 2), the Verification of Neural Networks (VNN)
workshop hosted the first competition on neural network
verification (VNN-COMP) in 20202. For the closed-loop
verification problem (e.g., for NNCS as in Section 3), the
Applied Verification of Continuous and Hybrid Systems
(ARCH) workshop hosted the first AINNCS category ver-
ification competition in 2019 [66]. Other efforts, such as
standardization of models (e.g., in Open Neural Network
Exchange (ONNX)3), specifications, etc., are emerging, such
as through the usage of HyST hybrid automata for ARCH-
COMP [67], and the development of the VNN-LIB4, an
effort like that of SMT-LIB [68] for satisfiability and SMT
problems.

5 CONCLUSIONS

This paper has surveyed recent approaches for verifying
machine learning components, specifically neural networks,
that are crucial to enabling autonomy in CPS, but that suffer
from well-known robustness problems. Numerous avenues
for future work exist, ranging from runtime verification and
assurance approaches to assure autonomy during system
operation, to expanded the types of LECs beyond feedfor-
ward neural networks for which most existing verification
approaches target.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work
supported by the Air Force Office of Scientific Research
(AFOSR) through contract number FA9550-18-1-0122 and
the Defense Advanced Research Projects Agency (DARPA)
through contract number FA8750-18-C-0089. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted

2. https://sites.google.com/view/vnn20/
3. https://onnx.ai/
4. http://www.vnnlib.org/

as necessarily representing the official policies or endorse-
ments, either expressed or implied, of AFOSR or DARPA.

Hoang-Dung Tran Dr. Hoang-Dung Tran will join
the Department of Computer Science and Engi-
neering at the University of Nebraska, Lincoln,
as an Assistant Professor in August 2020. He
earned his Ph.D. degree in Computer Science
from Vanderbilt University in the same year. His
research interests are in formal verification of au-
tonomous cyber-physical systems with learning-
enabled components, safe artificial intelligence,
hybrid, and switching systems, distributed con-
trol systems. He is also interested in robust

control, stability analysis of nonlinear control systems, and networked
control systems.

Weiming Xiang Dr. Weiming Xiang is currently
an Assistant Professor in the School of Com-
puter and Cyber Sciences at Augusta University.
Dr. Xiang earned his PhD degree from South-
west Jiaotong University in 2014 with his PhD
thesis on formal methods for hybrid traffic sys-
tems awarded the Outstanding PhD Dissertation
of Southwest Jiaotong University 2014. Before
joining Augusta University, Dr. Xiang worked as
a Postdoctoral Research Scholar in the Depart-
ment of Electrical Engineering and Computer

Sciences at Vanderbilt University from September 2016 to July 2019,
a Postdoctoral Research Associate in the Department of Computer
Science and Engineering at the University of Texas at Arlington from
November 2015 to August 2016, a Research Associate in the De-
partment of Mechanical Engineering at the University of Hong Kong
from May 2015 to October 2015. Dr. Xiang’s research interest is devel-
oping formal synthesis and verification techniques and software tools
for Cyber-Physical Systems (CPS). His current research centers on
formal methods on safety, security and reliability of learning-enabled
CPS. He is also broadly interested in methods and applications across
CPS domains, such as control synthesis, stability analysis, reachable
set computation, hybrid systems, power and energy, transportation,
fuzzy logic, and neural networks. Dr. Xiang was an Associate Editor of
Neurocomputing (2014-2019), and he was the Leading Guest Editor of
Special Issue: Recent Advances in Control and Verification for Hybrid
Systems in IET Control Theory and Applications and he is currently on
the Editorial Board of IET Control Theory and Applications. Dr. Xiang is
an IEEE Senior Member.

Taylor T. Johnson Dr. Taylor T. Johnson
(S’05M’13) received the M.Sc. and Ph.D. de-
grees from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 2010 and 2013,
respectively, both in electrical and computer en-
gineering. He is currently an Assistant Profes-
sor of electrical engineering and computer sci-
ence at the Vanderbilt University, Nashville, TN,
USA. His research interests include developing
algorithmic techniques and software tools to im-
prove the reliability of cyber-physical systems.

Dr. Johnson received the Air Force Office of Scientific Research Young
Investigator Program Award in 2018 and the National Science Foun-
dation Computer and Information Science and Engineering Research
Initiation Initiative Award in 2015.

https://sites.google.com/view/vnn20/
https://onnx.ai/
http://www.vnnlib.org/


IEEE DESIGN AND TEST, JULY 2020 7

REFERENCES

[1] M. Bojarski, D. Del Testa et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[2] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer,
“Policy Compression for Aircraft Collision Avoidance Systems,”
in 35th Digital Avionics Systems Conference. (DASC), 2016, pp. 1–10.

[3] K. Julian and M. J. Kochenderfer, “Neural Network Guidance for
UAVs,” in AIAA Guidance Navigation and Control Conference (GNC),
2017.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” CoRR, vol. abs/1312.6199, 2013. [Online]. Available:
http://arxiv.org/abs/1312.6199

[5] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Transactions on
Software Engineering, 2020.

[6] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Auto-
mated Verification of Neural Networks: Advances, Challenges and
Perspectives,” ArXiv e-prints, May 2018.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedfor-
ward Networks are Universal Approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[8] W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton,
X. Yang, J. A. Rosenfeld, and T. T. Johnson, “Verification for
machine learning, autonomy, and neural networks survey,”
CoRR, vol. abs/1810.01989, 2018. [Online]. Available: http:
//arxiv.org/abs/1810.01989

[9] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J.
Kochenderfer, “Algorithms for verifying deep neural networks,”
CoRR, vol. abs/1903.06758, 2019. [Online]. Available: http:
//arxiv.org/abs/1903.06758

[10] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer,
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Net-
works,” in International Conference on Computer Aided Verification.
Springer, 2017, pp. 97–117.

[11] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable Set Com-
putation and Safety Verification for Neural Networks with ReLU
Activations,” arXiv preprint arXiv: 1712.08163, 2017.

[12] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-
Parametric Toolbox 3.0,” in Proceedings of the European Control
Conference, Zürich, Switzerland, July 17–19 2013, pp. 502–510,
http://control.ee.ethz.ch/∼mpt.

[13] H.-D. Tran, P. Musau, D. M. Lopez, X. D. Yang, L. Nguyen,
W. Xiang, and T. T. Johnson, “Parallelizable reachability analysis
algorithms for feed-forward neural networks,” in FormaliSE 2019,
2019.

[14] H.-D. Tran, P. Musau, D. M. Lopez, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Star-based reachability analysis for
deep neural networks,” in 23rd International Symposium on Formal
Methods (FM’19). Springer International Publishing, October 2019.

[15] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of
deep convolutional neural networks using imagestars,” in 32nd
International Conference on Computer-Aided Verification (CAV), 2020.

[16] H. D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “NNV: The neural net-
work verification tool for deep neural networks and learning-
enabled cyber-physical systems,” in 32nd International Conference
on Computer-Aided Verification (CAV), 2020.

[17] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson, “Improved geo-
metric path enumeration for verifying ReLU neural networks,” in
32nd International Conference on Computer-Aided Verification (CAV),
July 2020.

[18] T. Gehr, M. Mirman, D. D. Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “AI2: Safety and Robustness Certification of
Neural Networks with Abstract Interpretation,” IEEE Symposium
on Security and Privacy, vol. 39, May 2018.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in International Confer-
ence on Learning Representations, 2015.

[20] W. Xiang, H.-D. Tran, and T. T. Johnson, “Specification-guided
safety verification for feedforward neural networks,” arXiv
preprint arXiv:1812.06161, 2018.

[21] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,” in
27th {USENIX} Security Symposium ({USENIX} Security 18), 2018,
pp. 1599–1614.

[22] R. J. Vanderbei., Linear Programming: Foundations & Extensions
(Second Edition). Springer, 2001.

[23] A. Lomuscio and L. Maganti, “An approach to reachability
analysis for feed-forward ReLU neural networks,” CoRR, vol.
abs/1706.07351, 2017. [Online]. Available: http://arxiv.org/abs/
1706.07351

[24] V. Tjeng and R. Tedrake, “Verifying Neural Networks with Mixed
Integer Programming,” arXiv preprint arXiv:1711.07356, 2017.

[25] S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari, “Out-
put Range Analysis for Deep Neural Networks,” arXiv preprint
arXiv:1709.09130, 2017.

[26] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output
Range Analysis for Deep Feedforward Neural Networks,” in
NASA Formal Methods, A. Dutle, C. Muñoz, and A. Narkawicz,
Eds. Cham: Springer International Publishing, 2018, pp. 121–138.

[27] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari,
“Sherlock-a tool for verification of neural network feedback sys-
tems: demo abstract,” in Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control. ACM, 2019,
pp. 262–263.

[28] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying Properties of Binarized Deep Neural Net-
works,” arXiv preprint arXiv:1709.06662, 2017.

[29] K. Scheibler, L. Winterer, R. Wimmer, and B. Becker, “Towards
Verification of Artificial Neural Networks.” in MBMV, 2015, pp.
30–40.

[30] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety Veri-
fication of Deep Neural Networks,” CoRR, vol. abs/1610.06940,
2016. [Online]. Available: http://arxiv.org/abs/1610.06940

[31] W. Ruan, M. Wu, Y. Sun, X. Huang, D. Kroening, and
M. Kwiatkowska, “Global Robustness Evaluation of Deep Neural
Networks with Provable Guarantees for L0 Norm,” ArXiv e-prints,
Apr. 2018.

[32] R. Ehlers, “Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks,” CoRR, vol. abs/1705.01320, 2017. [Online].
Available: http://arxiv.org/abs/1705.01320

[33] L. Pulina and A. Tacchella, “NeVer: a tool for artificial neural net-
works verification,” Annals of Mathematics and Artificial Intelligence,
vol. 62, no. 3, pp. 403–425, Jul 2011.

[34] ——, “An Abstraction-Refinement Approach to Verification of Ar-
tificial Neural Networks,” in Computer Aided Verification, T. Touili,
B. Cook, and P. Jackson, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 243–257.

[35] ——, “Challenging SMT solvers to verify neural networks,” AI
Communications, vol. 25, no. 2, pp. 117–135, 2012.

[36] M. Fränzle and C. Herde, “HySAT: An efficient proof engine for
bounded model checking of hybrid systems,” Formal Methods in
System Design, vol. 30, no. 3, pp. 179–198, Jun 2007.

[37] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output Reachable Set
Estimation and Verification for Multi-Layer Neural Networks,”
IEEE Transactions on Neural Network and Learning Systems, vol. 29,
no. 11, pp. 5777–5783, 2018.

[38] W. Xiang, D. M. Lopez, P. Musau, and T. T. Johnson, “Reachable
set estimation and verification for neural network models of
nonlinear dynamic systems,” in Safe, Autonomous and Intelligent
Vehicles. Springer, 2019, pp. 123–144.

[39] W. Xiang and T. T. Johnson, “Reachability analysis and safety
verification for neural network control systems,” arXiv preprint
arXiv:1805.09944, 2018.

[40] W. Xiang, H. Tran, X. Yang, and T. T. Johnson, “Reachable set
estimation for neural network control systems: A simulation-
guided approach,” IEEE Transactions on Neural Networks and Learn-
ing Systems, 2020.

[41] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli, “A
Dual Approach to Scalable Verification of Deep Networks,” arXiv
preprint arXiv:1803.06567, 2018.

[42] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar, “Piece-
wise linear neural network verification: A comparative study,”
arXiv preprint arXiv:1711.00455, 2017.

[43] C. Cheng, G. Nührenberg, and H. Ruess, “Verification of Binarized
Neural Networks,” CoRR, vol. abs/1710.03107, 2017. [Online].
Available: http://arxiv.org/abs/1710.03107

[44] R. R. Zakrzewski, “Randomized Approach to Verification of Neu-
ral Networks,” in 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No.04CH37541), vol. 4, July 2004, pp. 2819–
2824 vol.4.

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1810.01989
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://control.ee.ethz.ch/~mpt
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1610.06940
http://arxiv.org/abs/1705.01320
http://arxiv.org/abs/1710.03107


IEEE DESIGN AND TEST, JULY 2020 8

[45] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic Adversarial Deep
Learning,” ArXiv e-prints, Apr. 2018.

[46] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh,
and L. Daniel, “Evaluating the Robustness of Neural Networks:
An Extreme Value Theory Approach,” ArXiv e-prints, Jan. 2018.

[47] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated
testing of deep-neural-network-driven autonomous cars,” CoRR,
vol. abs/1708.08559, 2017. [Online]. Available: http://arxiv.org/
abs/1708.08559

[48] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated
Whitebox Testing of Deep Learning Systems,” CoRR, vol.
abs/1705.06640, 2017. [Online]. Available: http://arxiv.org/abs/
1705.06640

[49] W. Xiang, H.-D. Tran, J. A. Rosenfeld, and T. T. Johnson, “Reach-
able set estimation and safety verification for piecewise linear
systems with neural network controllers,” in 2018 Annual American
Control Conference (ACC). IEEE, 2018, pp. 1574–1579.

[50] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
verifying safety properties of hybrid systems with neural network
controllers,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control. ACM, 2019, pp. 169–
178.

[51] X. Sun, H. Khedr, and Y. Shoukry, “Formal verification of neural
network controlled autonomous systems,” in Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation
and Control. ACM, 2019, pp. 147–156.

[52] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analy-
sis for neural feedback systems using regressive polynomial rule
inference,” in Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control. ACM, 2019, pp. 157–
168.

[53] H.-D. Tran, F. Cei, D. M. Lopez, T. T. Johnson, and X. Koutsoukos,
“Safety verification of cyber-physical systems with reinforcement
learning control,” in ACM SIGBED International Conference on
Embedded Software (EMSOFT’19). ACM, October 2019.

[54] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reacha-
bility analysis of neural-network controlled systems,” ACM Trans-
actions on Embedded Computing Systems (TECS), vol. 18, no. 5s, pp.
1–22, 2019.

[55] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An
analyzer for non-linear hybrid systems,” in International Conference
on Computer Aided Verification. Springer, 2013, pp. 258–263.

[56] C. E. Tuncali, H. Ito, J. Kapinski, and J. V. Deshmukh, “Invited:
Reasoning about safety of learning-enabled components in au-
tonomous cyber-physical systems,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), June 2018, pp. 1–6.

[57] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification
of cyber-physical systems with machine learning components,” in
NASA Formal Methods Symposium. Springer, 2017, pp. 357–372.

[58] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract
domain for certifying neural networks,” Proceedings of the ACM
on Programming Languages, vol. 3, no. POPL, pp. 1–30, 2019.

[59] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast
and effective robustness certification,” in Advances in Neural Infor-
mation Processing Systems, 2018, pp. 10 802–10 813.

[60] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim,
S. Shivakumar, M. Vazquez-Chanlatte, and X. Yue, “Formal spec-
ification for deep neural networks,” in International Symposium on
Automated Technology for Verification and Analysis. Springer, 2018,
pp. 20–34.

[61] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario
specification and scene generation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 63–78.

[62] T. Dreossi, S. Ghosh, A. Sangiovanni-Vincentelli, and S. A. Seshia,
“A formalization of robustness for deep neural networks,” arXiv
preprint arXiv:1903.10033, 2019.

[63] L. V. Nguyen, J. Kapinski, X. Jin, J. V. Deshmukh, and T. T. Johnson,
“Hyperproperties of real-valued signals,” in Proceedings of the 15th
ACM-IEEE International Conference on Formal Methods and Models
for System Design, ser. MEMOCODE 17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 104113.

[64] S. A. Seshia, “Compositional verification without compositional
specification for learning-based systems,” University of California
at Berkeley, pp. 1–8, 2017.

[65] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-Time Reacha-
bility for Verified Simplex Design,” in 2014 IEEE Real-Time Systems
Symposium, Dec 2014, pp. 138–148.

[66] D. M. Lopez, P. Musau, H.-D. Tran, S. Dutta, T. J. Carpenter,
R. Ivanov, and T. T. Johnson, “Arch-comp19 category report:
Artificial intelligence and neural network control systems (ainncs)
for continuous and hybrid systems plants,” in ARCH19. 6th Inter-
national Workshop on Applied Verification of Continuous and Hybrid
Systems, ser. EPiC Series in Computing, G. Frehse and M. Althoff,
Eds., vol. 61. EasyChair, April 2019, pp. 103–119.

[67] S. Bak, S. Bogomolov, and T. T. Johnson, “Hyst: A source trans-
formation and translation tool for hybrid automaton models,” in
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control, ser. HSCC 15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 128133.

[68] C. Barrett, A. Stump, and C. Tinelli, “The smt-lib standard -
version 2.0,” in Proceedings of the 8th international workshop on
satisfiability modulo theories, Edinburgh, Scotland,(SMT ’10), 2010.

http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1708.08559
http://arxiv.org/abs/1705.06640
http://arxiv.org/abs/1705.06640

	Introduction
	Verification of Neural Networks
	Geometric and Reachability Methods
	MILP Methods
	Satisfiability and SMT Methods
	Other Optimization-Based Methods
	Other Methods

	Verification and Fasification of Neural Network Control Systems
	Challenges and Future Directions
	Conclusions
	Biographies
	Hoang-Dung Tran
	Weiming Xiang
	Taylor T. Johnson

	References

