
Parallelizable Reachability Analysis Algorithms for Feed-Forward Neural Networks

1st Hoang-Dung Tran
Vanderbilt University

Nashville, USA
trhoangdung@gmail.com

4thXiaodong Yang
Vanderbilt University

Nashville, USA
xiaodong.yang@vanderbilt.edu

2nd Patrick Musau
Vanderbilt University

Nashville, USA
patrick.musau@vanderbilt.edu

5th Luan Viet Nguyen
University of Pennsylvania

Philadelphia, USA
luanvn@seas.upenn.edu

3rd Diego Manzanas Lopez
Vanderbilt University

Nashville, USA
diego.manzanas.lopez@vanderbilt.edu

6th Weiming Xiang
Vanderbilt University

Nashville, USA
xiangwming@gmail.com

7th Taylor T. Johnson
Vanderbilt University

Nashville, USA
taylor.johnson@vanderbilt.edu

Abstract—Artificial neural networks (ANN) have displayed
considerable utility in a wide range of applications such as
image processing, character and pattern recognition, self-
driving cars, evolutionary robotics, and non-linear system
identification and control. While ANNs are able to carry out
complicated tasks efficiently, they are susceptible to unpre-
dictable and errant behavior due to irregularities that emanate
from their complex non-linear structure. As a result, there
have been reservations about incorporating them into safety-
critical systems. In this paper, we present a reachability analysis
method for feed-forward neural networks (FNN) that employ
rectified linear units (ReLUs) as activation functions. The crux
of our approach relies on three reachable-set computation
algorithms, namely exact schemes, lazy-approximate schemes,
and mixing schemes. The exact scheme computes an exact
reachable set for FNN, while the lazy-approximate and mixing
schemes generate an over-approximation of the exact reachable
set. All schemes are designed efficiently to run on parallel
platforms to reduce the computation time and enhance the
scalability. Our methods are implemented in a MATLAB R©
toolbox called, NNV, and is evaluated using a set of benchmarks
that consist of realistic neural networks with sizes that range
from tens to a thousand neurons.Notably, NNV successfully
computes and visualizes the exact reachable sets of the real
world ACAS Xu deep neural networks (DNNs), which are a
variant of a family of novel airborne collision detection systems
known as the ACAS System X, using a representation of tens
to hundreds of polyhedra.

I. INTRODUCTION

Artificial neural networks (ANN) have demonstrated an
effective and powerful ability to achieve success in numer-
ous contexts such as image classification [1], speech, and
character recognition [2], [3], financial market forecasting,
autonomous vehicles [4], and the design of neural network
based airborne collision avoidance systems such as ACAS
Xu [5]. Due to their proficient ability to learn complex
non-linear functions from large sets of data, ANNs have

quickly become a popular methodology for carrying out
various sophisticated tasks. Despite their success, it has been
observed that even a well-trained ANN can exhibit incorrect
and errant behavior by slightly perturbing its inputs [6].
This revelation has stimulated a wealth of safety verification
techniques that seek to reason about the correctness of an
ANNs behavior. Regrettably, the safety verification problem
for ANNs is notoriously difficult, due to the non-convex,
non-linear, and typically large nature of their structure. In
fact, it has been demonstrated that verifying even a simple
property about an ANN’s behavior is NP-complete [7].
Thus there is an immediate need for methods and advanced
software tools that can efficiently deal with the complexity
and scale of real-world ANNs.

In light of these challenges, the central focus of this
paper is the provision of reachable set computation methods
for trained feed-forward neural networks (FNN) with ReLU
activation functions. By computing the reachable set of a
neural network’s outputs, one can verify various safety spec-
ifications, and by visualizing the projection of the reachable
set onto a specific subspace, one can further reason about the
behavior of a particular network. Unlike many of the existing
verification approaches, our method can compute both an ex-
act reachable set, and an over-approximation of the reachable
set for a given FNN. Furthermore, the algorithms proposed
in this work, have been tailored to exploit the benefits of
parallel computing. Thus, the computation time required
to compute the reachable set for a given neural network
diminishes linearly with the number of processors (cores)
utilized in the computation process. In our framework, we
express the reachable set of a FNN at the output layer as a
union of convex polyhedra.

The three procedures that we consider for computing
the reachable set of FNNs are: an exact scheme, a lazy-

approximate scheme, and a mix of both schemes, which
we denote as mixing schemes. The exact scheme computes
a layer-by-layer explicit reachable set for a FNN. At each
layer, the exact scheme performs a sequence of stepReLU
operations, which compute an intermediate (incomplete)
reachable set for a specific neuron. This is done by ex-
amining the output of the ReLU activation function on
the input field of the considered neuron. The reachable set
at a given layer’s output is obtained after a sequence of
stepReLU operations is completed, and is not dependent
on the order of stepReLU operations. To optimize the
reachable set computation, our scheme pre-processes the
input set at each layer in order to minimize the number of
stepReLU operations that need to be executed. Additionally,
the reachable set for each input polyhedron for a given layer
is computed independently and in parallel.

Secondly, the lazy-approximate scheme, is an over-
approximation procedure specifically designed to compute
safe ranges for the outputs of a FNN. In particular, the
output range of each layer is bounded by a hyper-rectangle
which can be constructed efficiently by solving n linear
programming problems, where n is the number of neurons
of the layer. The lazy-approximate scheme, does not perform
stepReLU operations, and as a result, it is much faster than
the exact scheme. However, the error resulting from the over-
approximations accumulate very quickly for deep FNNs,
resulting in very conservative output ranges for networks
with many layers. Therefore, the approximate scheme is
primarily suitable for FNNs with a limited number of layers.
However, it can deal with large numbers of neurons in these
layers. It is also worth to noting that for a FNN with a
small input space, we can first partition the input space into
a smaller set of polyhedra, and then compute a tight over-
approximation of the reachable set in parallel using the lazy-
approximate scheme.

The third scheme, called the mixing scheme, is designed to
maximize the advantages of the exact and lazy-approximate
approaches and operates as follows. 1) The exact scheme is
used to compute a reachable set layer-by-layer until the num-
ber of polyhedra representing this set exceeds a user-defined
upper bound, Nmax. Once this occurs, these polyhedra are
efficiently clustered and merged into Nmax hyper-rectangles
such that the union of Nmax hyper-rectangles represents a
tight over-approximation of the reachable set. In fact, we
cluster {N | N > Nmax}, polyhedra of the reachable
set into Nmax groups based on whether the considered
polyhedra overlap, and then over-approximate the union of
the polyhedra in these groups using one hyper-rectangle. 2)
After the clustering and merging steps, the lazy-approximate
scheme is invoked to compute the reachable set of the rest
layers in parallel, using an input set that is a union of Nmax

hyper-rectangles. The conservativeness of the reachable set
obtained using this methodology is highly dependent on the
user-defined upper bound Nmax. Generally, when Nmax

is increased, the over-approximation of the reachable set
approaches the exact reachable set. The main benefit of
this mixing scheme is that the number of polyhedra used
in representing the reachable set can be tuned by a user
which has a great influence the required computation time.

We evaluate our methods by considering two practical
problems including safety verification, and local adversar-
ial robustness of FNNs. For safety verification, our exact
scheme successfully verifies the safety of the real-world
ACAS Xu DNNs [5]. Notably, our method can visualize ex-
plicitly the behaviors of these networks using the computed
reachable sets which is a notable advance of our approach in
comparison with Reluplex, an SMT-solver based approach.
Our techniques also successfully prove the local adversarial
robustness of neural networks with up to a thousand neurons.

Contributions. In summary, the main contributions of this
study are as follows.

1) The provision of three Parallelizable schemes designed
to efficiently compute the reachable set of an FNN
with ReLU activation functions,

2) An end-to-end design and implementation of these
schemes in a MATLAB R© toolbox that is publicly
available for verifying complex FNNs,

3) and a thorough experimental evaluation of our pro-
posed methods in comparison to the other existing
state-of-the art approaches using a set of benchmarks
consisting of practical FNNs.

The rest of the paper is organized as follows. Section II
presents the background of the safety verification problem
of FNNs. Section III addresses the exact reachable set
computation scheme. Section II studies the lazy-approximate
scheme, and discusses how to cluster and merge a number
of polyhedra of a reachable set into a user-specified number
of hyper-rectangles, and then presents the mixing scheme.
The experimental results are illustrated in Section V. The
related works are discussed in Section VI, and Section VII
concludes the paper.

II. PRELIMINARIES

A FNN consists of an input layer, an output layer, and
multiple hidden layers. Each layer is comprised of neurons
that are connected to the neurons of the preceding layer
labeled using weights. An example of FNN is shown in
Figure 1 where the input layer L1 has two neurons, the
hidden layer L2 has three neurons, and the output layer L3

has two neurons.
Evaluation of FNN. The output of a FNN, given a

specific input vector is determined by three components:
the weight matrices Wk,k−1, representing the weighted
connection between neurons of two consecutive layers k−1
and k, the bias vectors bk of each layer, and the activation
function f applied at each layer. Formally, the output of a
neuron i is defined by:

yi = f(Σn
j=1ωijxj + bi),

Input 1

Input 2

Output 1

Output 2

Input layer Hidden layer Output layer

L
1

L
2

L
3

Figure 1: An example of FNN.

where xj is the jth input of the ith neuron, ωij is the weight
from the jth input to the ith neuron, bi is the bias of the ith

neuron. In this paper, we consider FNN with ReLU activa-
tion functions which is defined as ReLU(x) = max(0, x).

Example II.1 (Evaluation of FNN). The example shown in
Figure 1 has the following weight matrices and bias vectors:

W2,1 =

2 0
1 −1
1 1

 , b2 =

 0.5
−1
−0.5

 ,
W3,2 =

[
−1 0 1
1 −1 0

]
, b3 =

[
−0.5
0.5

]
.

The weight matrix W2,1 expresses the weighted connections
between the neurons of the hidden layer L2 and the neurons
of the input layer L1, while the weight matrix W3,2 describes
the weighted connections between the neurons of the output
layer L3 and the neurons of the hidden layer L2.

Assuming that the input vector for the input layer is x =
[1 1]T , and that we use ReLUs for the activation functions
of the neural network, then the vector containing the values
of the hidden layer’s neurons is:

y2 = ReLU(W2,1 × x+ b2) = [2.5 0 1.5]T

The vector y2 is then fed to the output layer L3 as its
input vector. Finally the output vector for the output layer
is:

y3 = ReLU(W3,2 × y2 + b3) = [0 3]T

Reachability analysis of FNN. The example described
above describes how to compute the output values for a
FNN using a specific input vector. In this paper, we are
interested in computing the reachable set R of the output of
a FNN with a given input set I . Specifically, we consider
the reachability analysis of a FNN with a bounded convex
polyhedron input set defined as

I = {x | Ax ≤ b, x ∈ Rn},

where x is the input vector, and n is the dimension of the
input space, i.e., the number of inputs of the FNN. Since
the ReLU activation function is non-linear, and typically
FNNs have a large number of layers and neurons, performing
reachability analysis for a FNN is non-trivial.

Safety verification of FNN. The ultimate goal of conduct-
ing reachability analysis for a FNN is to verify whether the
outputs of the FNN violate some safety property S defined
by users. In our framework, the safety properties we consider
are a set of linear constraints on the outputs of the FNN
defined as:

S = {y | Cy ≤ d, y ∈ Rm},

where y is the output vector, and m is the dimension of the
output space, i.e., the number of outputs of the FNN. From
the reachable set R of the outputs computed by reachability
analysis algorithms, we can verify safety properties for
FNNs by checking the intersection between the determined
output reachable set with an unsafe region, i.e., ¬S, where
¬ is the symbol for logical negation. Formally, the FNN is
called safe if and only if R ∩ ¬S = ∅.

III. EXACT REACHABILITY ANALYSIS

In our approach, the exact reachability analysis is done
layer-by-layer. Given an input set Ii, the reachable set of
a layer L can be obtained precisely in two steps. First, an
affine map Īi of the input set Ii is computed with the weight
matrix W and bias vector b of the layer. Mathematically, the
affine map Īi is defined by:

Īi = {y | y = Wx+ b, x ∈ Ii}.

After calculating the affine map of the input set, the
reachable set of the layer RL is obtained by applying the
ReLU activation function on the affine-mapped set Īi,

RL = ReLU(Īi).

This second step is done by executing a sequence of
stepReLU operations ReLUj() which is defined below.

A. stepReLU operation

The basic idea of stepReLU operations is illustrated
in Figure 2 for a two-dimensional affine-mapped set Īi.
The stepReLU operation works as follows. First, the affine
mapped set Īi is decomposed into two sets Ψ1 = Īi∧x1 ≥ 0
and Ψ2 = Īi ∧ x1 < 0. Since the later set has x1 < 0,
applying the ReLU activation function on the first element
x1 of a vector x = [x1 x2]T ∈ Ψ2 will lead to a new vector
x′ = [0 x2]T . Also, applying the ReLU activation function
on the first element x1 of a vector x ∈ Ψ1 does not change
the set since we have x1 ≥ 0. As a result, the intermediate
reachable set after applying the ReLU1 operation on the
affine-mapped set Īi is R̃ = R̃1 ∪ R̃2, where R̃1 = Ψ1,
R̃2 is the projection of Ψ2 on the hyper-plane x1 = 0.
The intermediate reachable set R̃ is then fed to the ReLU2

operation as an input. The final reachable set of the layer is a
union of three polyhedra RL = ReLU(Īi) = R1∪R2∪R3 as
shown in the figure. For a layer with n neurons, the reachable

Ī i

x1

x2

ReLU 1
¯(I i)

Ī i∧x1<0

Ī i∧x1≥0

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

R1R2

R3

ReLU 2(
~R)

Intermediate (incomplete)
reachable set :~R=~R1∪

~R2

Final(complete)
reachable set :R L=R1∪R2∪R3

mapping

M 1=[1 0
0 1]

M 2=[0 0
0 1]

mapping

∪

~R1

~R2

Figure 2: stepReLU operation.

set of the layer can generally be obtained by executing a
sequence of n stepReLU operations as follows.

RL = ReLUn(ReLUn−1(· · ·ReLU1(Īi))).

One can verify that changing the order of the stepReLU
operations affects the intermediate reachable set but it does
not change the final reachable set of the layer.

Optimize stepReLU operation. From a single polyhe-
dron input set, a stepReLU operation can produce two
polyhedra, e.g., ReLU1(Īi) in Figure 2. The number of
polyhedra in computation increases with the number of
stepReLU operations. Therefore, to reduce the computation
cost, it is crucial to minimize the number of necessary
stepReLU operations and the number of polyhedra in the
intermediate reachable sets. The solution for this optimiza-
tion problem is to find the smallest hyper-rectangle, i.e., a
box, that bounds the affine-mapped set Īi, from this hyper-
rectangle we determine the ranges of all elements xi in the
vector x = [x1 x2 · · · xn]T ∈ Īi. Finding these ranges
is trivial since it is equivalent to solving n simple linear
programming problems. From the ranges of all elements of
the vector x, if we know that the minimum value of the
element xi is larger than zero, then we can neglect the
stepReLU operation on the ith neuron. To minimize the
number of polyhedra in the intermediate reachable sets, in
each stepReLU operation, if it produces two polyhedra, we
need to check whether or not one polyhedron is a subset of
another to delete the subset polyhedron.

The stepReLU operation is stated in Algorithm 1 in which
Ĩ is the input set (i.e., the output of the preceding stepReLU
operation), i is the index of the current neuron we want to
perform the stepReLU operation, and xmin, xmax are the
lower and upper bounds of the element x[i], respectively.

B. Parallel-exact reachability analysis

Algorithm 1 computes the intermediate reachable set at
each neuron. To compute the reachable set of a layer, we
need to perform a sequence of stepReLU operations. The last
step of the sequence calculates the reachable set of the layer.

Algorithm 1 stepReLU operation with multiple inputs

1: procedure R̃ = STEPRELU(Ĩ , i, xmin, xmax)
2: % Ĩ: intermediate input set
3: % i: index of current neuron
4: % xmin: lower-bound of x[i]
5: % xmax: upper-bound of x[i]
6: % R̃: intermediate output set
7: n = length(Ĩ)
8: R̃ = ∅
9: for j = 1 : n do

10: I1 = I(j)
11: R1 = ∅
12: if xmin ≥ 0 then
13: R1 = I1
14: if xmax < 0 then
15: R1 = projection of I1 on x[i] = 0

16: if xmin < 0 & xmax ≤ 0 then
17: Z1 = I1 ∧ x[i] ≥ 0
18: Z2 = I1 ∧ x[i] < 0
19: Z′

2 = projection of Z2 on x[i] = 0
20: if Z′

2 is a subset of Z1 then
21: R1 = Z1

22: else
23: R1 = Z1 ∪ Z′

2

24: R̃ = R̃ ∪R1

Algorithm 2 is the reachable set computation of one layer
using the stepReLU operation. First, it calculates the affine
map of the input set using the layer’s weight matrix and bias
vector. Then, it performs the reachReLU procedure which
basically executes a sequence of stepReLU operations. To
optimize the stepReLU operations, the reachReLU proce-
dure finds the lower and upper bounded of a vector x in the
affine-mapped set. Then, it constructs a computation map
which minimizes the number of stepReLU operations needs
to be executed. Since a layer can have multiple polyhedra
as input sets, we can perform the reachable set computation
for each input set in parallel. To derive the reachable set for
an FNN, we perform the reachable set computation layer-
by-layer. The reachable set of the last layer is the output
reachable set of the FNN.

Algorithm 2 Parallel-exact reachable set computation for
one layer
Input: I , W , b % input set, weight matrix, bias vector
Output: R % reachable set

1: procedure R1 = REACHRELU(I1)
2: lb← lower − bound of x ∈ I1
3: ub← upper − bound of x ∈ I1
4: map = find(lb < 0) % computation map
5: m = length(map) % number of stepReach operations
6: In = I1
7: for i = 1 : m do
8: In = stepReLU(In,map(i), lb(map(i)), ub(map(i)));
9: R1 = In;

10: procedure R = LAYERREACH(I,W, b)
11: n = length(I)
12: R = ∅
13: parfor i = 1 : n do % parallel for loop
14: I1 = I(i).affineMap(W) + b
15: R1 = reachReLU(I1)
16: R = R ∪R1

17: end parfor

Figure 3: Exact reachable set of the FFN in Example II.1.

Example III.1 (Exact reachability analysis of FNN). In this
example, we perform the reachability analysis for the FNN
in Example II.1 with the input set I = {0 ≤ x[1] ≤ 2∧ 0 ≤
x[2] ≤ 2}. Note that, the vector x = [1 1]T is the center of
the input set. Using Algorithm 2, the exact reachable sets of
the hidden layer L2 and the output layer L3 are computed
in which each layer’s exact reachable set consists of two
polyhedra as depicted in Figure 3. It can be seen that the
output y = [0 3]T corresponding to the input x = [1 1]T

lies in the output reachable set.

IV. APPROXIMATE REACHABILITY ANALYSIS

A. Lazy-approximate reachability analysis

We have investigated the exact scheme for reachability
analysis. In this section, we discuss a lazy approximation
approach for reachability analysis of FNN with ReLU
activation functions. This lazy-approximate scheme does
not perform any stepReLU operations. Instead, it finds the
smallest hyper-rectangle that bounds an affine-mapped set
Īi. Since ReLU(x) ≥ 0, the output ranges of a layer can
be quickly derived by the lower-bound and upper-bound
information in each dimension of the state vector x in the
obtained hyper-rectangle. Figure 4 illustrates the idea of the
lazy-approximate scheme. Algorithm 3 is the pseudo-code

Ī i

x1

x2

x1

x2
Ī i

x1

x2

Figure 4: Lazy-approximate scheme.

of the parallel, lazy-approximate scheme.

Algorithm 3 Parallel-lazy reachable set approximation for
one layer
Input: I , W , b % input set, weight matrix, bias vector
Output: R % an over-approximate reachable set

1: procedure B = LAZYRELU(I1)
2: lb← lower − bound of x ∈ I1
3: ub← upper − bound of x ∈ I1
4: m = length(lb)
5: for i = 1 : m do
6: if lb(i) ≥ 0 then
7: lb(i) = 0

8: if ub(i) ≥ 0 then
9: ub(i) = 0

10: procedure R = LAYERLAZYREACH(I,W, b)
11: n = length(I)
12: R = ∅
13: parfor i = 1 : n do % parallel for loop
14: I1 = I(i).affineMap(W) + b
15: R1 = lazyReLU(I1)
16: R = R ∪R1

17: end parfor

Example IV.1 (Lazy output range analysis of FNN). In
this example, we perform a lazy reachability analysis for
the FNN in Example II.1 with the same input set as in
the Example III.1. The resulted over-approximate reachable
sets of the hidden and output layers are depicted in Figure
5. We can see that the output ranges of the hidden layer
can be derived precisely from its lazy, over-approximate
reachable set. However, the output ranges of the output layer
are conservatively approximated by its corresponding lazy,
over-approximate reachable set. We observe that the error
in over-approximation is accumulated quickly over layers.
Therefore, the lazy-scheme is only useful for FNN with a
small number of layers.

Lazy-approximate reachability analysis with input
partition. As shown in Figure 5, the ranges of the first
and second outputs are [0, 2.5] and [0, 5], which are
much larger than the exact ranges computed, i.e., [0, 0.5]
and [1, 2] as depicted in Figure 3. But, we can improve
these over-approximations by partitioning the input set into
smaller sets, and then performing the lazy-approximate
scheme on these partitioned input sets.

Example IV.2 (Output range analysis of FNN with lazy-ap-

Figure 5: Reachable set of the FFN in Example III.1 using
lazy-approximate scheme.

Figure 6: Reachable set of the FFN in Example III.1 using
lazy-approximate scheme and input partition.

proximate scheme and input partition). In this example, we
partition uniformly the input set I = {0 ≤ x[1] ≤ 2 ∧ 0 ≤
x[2] ≤ 2} into 16 smaller sets. We perform Algorithm 3 on
these partitioned sets. The over-approximate reachable sets
of the hidden and output layers are given in Figure 6. As
shown in the figure, the output ranges of the FNN precisely
match the one obtained by the exact scheme.

We have discussed in detail the lazy-approximate scheme.
Next, we consider a combination of both schemes to control
the number of polyhedra in the reachable set while still ob-
taining a over-approximate reachable set with an acceptable
conservativeness.

B. Mixing reachability analysis

The mixing reachability analysis scheme is proposed
with three main objectives: 1) controlling the number of
polyhedra in the reachable set; 2) reducing the reachable
set computation time, and 3) producing an acceptable over-
approximation of the actual reachable set. For the first
objective, the mixing scheme lets users choose a maximum
number of polyhedra Nmax to represent the reachable set.
The mixing scheme computes the exact reachable set layer-
by-layer and observes the number of polyhedra N in the
reachable set. When N > Nmax, the mixing scheme
performs clustering and merging algorithm to merge N
polyhedra into Nmax hyper-rectangles. Then, it continues
computing a reachable set for the rest layers using the lazy-
approximate scheme with the Nmax hyper-rectangles as in-
put sets. The conservativeness of the resulting reachable set
comes from two sources. The first source is the error caused
by merging N polyhedra into Nmax hyper-rectangles. The
second source is the error from using the lazy-approximate
scheme to compute the reachable set. We need to minimize

Figure 7: Clustering and merging reachable set.

these errors in order to improve the conservativeness of the
result. In this paper, we propose an efficient clustering and
merging algorithm by analyzing how much the polyhedra
overlap to reduce error. The second source of error remains
a challenge.

Assume we want to merge N polyhedra into Nmax hyper-
rectangles such that the union of these hyper-rectangles
tightly over-approximates the union of the N polyhedra. Our
clustering and merging algorithm works as follows. First,
we obtain N smallest hyper-rectangles that bound the N
polyhedra. Then, based on the lower-bound lb and upper-
bound ub vectors of these hyper-rectangles, we compute
the overlapness OLN between the N polyhedra which is
defined by

OLNi,j =
√

(lbi − lbj)2 + (ubi − ubj)2, (1)

where lbi(ubi), lbj(ubj) ∈ Rn are lower-bound (upper-
bound) vectors of polyhedron i and j respectively, and n
is the number of neurons of the layer.

Using the overlapness data and the well-known clustering
algorithm K-means [8], we cluster N polyhedra into N
groups and merge all polyhedra in each group into one
hyper-rectangle by interfering the lower-bound and upper-
bound information of all hyper-rectangles bounding the
polyhedra in the group.

Example IV.3 (Clustering and merging polyhedra). In this
example, we perform the clustering and merging algorithm
on a reachable set with 1250 polyhedra [9]. These polyhedra
are clustered and merged into 16 and 128 hyper-rectangles.
Figure 7 shows the result of our algorithm. We note that even
using a small number of hyper-rectangles, we can tightly
over-approximate the actual reachable set with more than
one thousand polyhedra. Another benefit of this algorithm
is its speed. The conservativeness in the merging process
can be reduced by increasing the number of hyper-rectangles
representing the reachable set.

Conservativeness and computation time reduction. Al-
though the clustering and merging algorithm can reduce the
first source of error significantly, the second source of error
in the mixing scheme can still lead to a very conservative
reachable set. This is due to the over-approximation error
of the lazy-approximate scheme, which accumulates over
the layers. In general, in any approximation scheme we
use, e.g., zonotope-based approximation scheme [10], the

Algorithm 4 Mixing scheme for reachable set approxima-
tion for one layer
Input: I , W , b, Nmax % Input set, weight matrix, bias vector,

maximum number of polyhedra
Output: R % an reachable set

1: procedure R = MIXINGREACH(I,W, b,Nmax)
2: n = length(I)
3: if n < Nmax then
4: R = layerReach(I,W, b) % Algorithm 2
5: else
6: I1 = cluster merge(I,Nmax) % clustering and

merging
7: R = layerLazyReach(I1,W, b) % Algorithm 3

Figure 8: Mixing reachability analysis of the FNN in Exam-
ple III.1.

accumulation of the over-approximation error is inevitable.
Therefore, choosing an appropriate number of polyhedra
Nmax to represent the reachable set is crucial. This number
should be chosen in a way that the lazy-approximate scheme
is only invoked in the last layer or last two layers to
guarantee an acceptable reachable set. It is worth noting that
from our experiments in the exact scheme, the reachable set
computation time of the last two layers of an FNN usually
constitutes > 50% the total reachable set computation time.
This is because: 1) the last two layers take a vast number
of polyhedra as input sets, and 2) the constraints of each
polyhedron in the input sets are large. Note that the number
of constraints of a reachable set increases over the layers due
to the intersection operations in the computation process,
e.g., see Algorithm 1. Since the lazy-approximate scheme is
usually much faster than the exact scheme, choosing Nmax

is a trade-off problem between conservativeness and compu-
tation time reduction. If we use the lazy-approximate scheme
for the last layer, we usually reduce ≈ 30% of the total
reachable set computation time while still precisely deriving
the output ranges of a FNN. Algorithm 4 summarizes the
main steps of the mixing scheme.

Example IV.4 (Mixing reachability analysis of FNN). In
this example, we reuse the FNN in Example III.1 in which
the input set is partitioned into 256 smaller sets. We want to
compute the reachable set of this FNN with these partitioned
input sets using the mixing scheme in which the maximum
allowable number of polyhedra is chosen to be Nmax = 100.
In this case, if we use the exact scheme to compute the
reachable set, the numbers of polyhedra in the reachable set
of the hidden and output layers are 276 and 281 respectively.

Using the mixing scheme with Nmax = 100, the number of
polyhedra of the reachable sets of the hidden and output
layers is reduced to 100. The final result is displayed in
Figure 8, noticing that some polyhedra are overlapping
others.

V. EVALUATION

We implement our approach in a MATLAB R© tool-
box called, NNV using the set library in MPT toolbox
[11]. Our methods are evaluated using the computation
time, scalability and conservativeness via a set of real-
world FNN with several to a thousand neurons. The
experimental results presented in this section are repro-
ducible. The scripts for reproducing the results are avail-
able at https://github.com/verivital/nnv/tree/master/nnv0.1/
examples/Submission/FORMALISE2019.

A. Safety verification for ACAS Xu DNNs

In this case study, we verify the safety of ACAS Xu
DNNs1 using our exact scheme. The ACAS Xu networks
consist of 45 DNNs which are trained to replace a traditional
memory-consuming lookup table that maps the sensor mea-
surements to advisories in the Airborne Collision Avoidance
System X [5], [7]. Each DNN denoted by Nx y has 5 inputs,
5 outputs, 6 hidden layers in which each layer consists of 50
neurons. A vertical view of a generic example of the ACAS
Xu benchmark set is given in Figure 9. The inputs of ACAS
Xu neural networks are:

• ρ: distance from ownship to intruder (feet)
• θ: angle to intruder relative to ownship heading direc-

tion (radians)
• ψ: heading angle of intruder relative to ownship head-

ing direction (radians)
• vown: speed of ownship (feet per second)
• vint: speed of intruder (feet per second)

Two other variables, τ , time until loss of vertical separation
(seconds), and aprev , previous advisory, are discretized and
used to generate the 45 neural networks mentioned.

Figure 9: Vertical view of a generic example of the ACAS
Xu benchmark set.

1https://github.com/guykatzz/ReluplexCav2017

https://github.com/verivital/nnv/tree/master/nnv0.1/examples/Submission/FORMALISE2019
https://github.com/verivital/nnv/tree/master/nnv0.1/examples/Submission/FORMALISE2019
https://github.com/guykatzz/ReluplexCav2017

We present two properties that are checked to be satisfied
or unsatisfied by ACAS Xu benchmarks using our exact
scheme. We refer readers to [7] for more properties.
• Property φ1. (Which is property Φ3 in [7])

– If the intruder is directly ahead and is moving
towards the ownship, the score for COC will not
be minimal.

– The desired output property is that the score for
COC is not the minimal score.

– It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤
|0.06|, ψ ≥ 3.10, vown ≥ 980, vint ≥ 960.

• Property φ2. (Which is property Φ4 in [7])
– If the intruder is directly ahead and is moving away

from the ownship but at a lower speed than that
of the ownship, the score for COC will not be
minimal.

– The desired output property is that the score for
COC is not the minimal score.

– It has 5 input constraints: 1500 ≤ ρ ≤ 1800, θ ≤
|0.06|, ψ = 0, vown ≥ 1000, 700 ≤ vint ≤ 800.

We use the exact scheme on a computer with 4 cores
to rigorously compute the exact, output reachable sets of
the ACAS Xu networks. Table I shows the verification
results of our exact scheme. Our results demonstrate that
the number of polyhedra in the output reachable set Np

varies with different properties and may be very large. By
pre-processing the input set, our exact scheme can reduce
a vast amount of stepReLU operations Nr. The reachable
set computation time (RT) dominates the verification time
(VT) in our approach. The benefit of our approach is that
once the whole output reachable set is obtained, it can be
used to verify different properties (defined on the same
input conditions) quickly without re-running the analysis.
Notably, unlike Reluplex [7], an SMT-solver based approach,
out approach can visualize explicitly the behavior of a
DNN which is convenient for intuitively checking the safety
property. For instance, Figure 10 illustrates the projected,
normalized reachable set of the output of the N2 9 network
for property φ2 which requires that the score (i.e., value) of
the COC output is not the minimal score compared with
others. We can quickly observe from the figure that the
property φ2 holds on N2 9 network.

To show the benefit of our parallelizable exact scheme, we
evaluate the exact scheme by checking the property φ1 on
the network N2 9 using a different number of cores. Figure
11 shows that the reachable set computation time reduces
significantly as the number of cores increases which implies
that our approach is very promising for computing exact
reachable set of DNNs using multi-core platforms.

Although there are scalable over-approximation ap-
proaches that can be used to compute the reachable set of
DNNs [10], [12], the exact reachable set is still important
since in many cases, the over-approximation approaches

Property FNN Safe/Unsafe Exact scheme
Np

a Nr RT (sec) b ST (sec) VT (sec)

φ1

N2 4 safe 345 6599 4635.7 2.17 4637.87
N2 9 safe 188 3193 2135.53 2.7454 2138.28
N5 9 safe 107 2489 1036.06 0.6399 1036.7

φ2

N2 9 safe 16 436 248.8 0.2452 249.05
N3 8 safe 295 3975 3281.47 1.9107 3283.38
N5 7 safe 34 1838 522.04 0.7288 522.77

a Np is number of polyhedra in the output reachable set,
Nr is the number of stepReLU operations reduced.

b RT is the reachable set computation time, ST is the safety checking time,
V T = RT + ST is the total verification time.

Table I: Verification results of ACAS XU networks. This
experiment is done on a computer with following configu-
rations: Intel Core i7-6700 CPU @ 3.4GHz × 8 Processor,
62.8 GiB Memory, 64-bit Ubuntu 16.04.3 LTS OS

Figure 10: A projected (and normalized) output reachable
set for property φ2 on ACAS XU N2 9 network.

cannot verify the safety properties. For example, Sherlock
[12] can be used to compute the output ranges of N2 9

network which are 14.66 ≤WeakRight ≤ 14.7, −0.101 ≤
WeakLeft ≤ −0.0419, 14.9470 ≤ COC ≤ 15.138,
15.0195 ≤ StrongRight ≤ 15.0735, and 1.1817 ≤
StrongLeft ≤ 1.2634. Using this output range information,
Sherlock can verify property φ2 requiring that COC output
is not the minimal score compared with others. However, if
we want to verify whether or not the reachable set of the
network reaches the unsafe region defined by φ′2 , 15.03 ≤
StrongRight ≤ 15.04 ∧ 1.24 ≤ StrongLeft ≤ 1.22,
Sherlock’s reachable set contains the unsafe region, and
thus the safety of the network is unknown in this case. In
contrast, using our exact reachable set, we can prove that
the reachable set of the network does not reach the unsafe
region φ′2, and thus the network is still safe in this case.

B. Local adversarial robustness of DNNs

Adversarial robustness of DNNs has become a hot re-
search topic recently since many safety-critical applications
rely on the image classification DNNs that have been shown
to be vulnerable to adversarial inputs [13]. Adversarial
attacks that slightly perturb a correctly classified input can
lead to misclassification by a network. A network is said to
be δ− locally− robust at input point x if for every x′ such
that ‖x− x′‖∞ ≤ δ, the network assigns the same label to
x and x′ [7].

We train a set of image classification DNNs with different

FNN Cores Exact Approximate Approximate
& Partition Mixing

T(sec) R(%) Output T(sec) R(%) Output T(sec) R(%) Output T(sec) R(%) Output

MNIST1

i = 784, o = 1, l = 6, n = 141

1 243.57 0
[0.9099, 0.9561] 0.0051 0 [0, 10.22]

0.267 0
[0,6.527]

163.01 0
[0, 2.308]2 153.33 37.05 0.7153 -168 118.74 27.16

4 142.07 41.67 0.778 -191 114.335 29.86

MNIST2

i = 784, o = 1, l = 5, n = 250

1 684.6 0
[0.9901, 0.9934] 0.0062 0 [0, 5.37]

0.34 0
[0.3446, 2.0788]

72.73 0
[0.6196, 1.4329]2 328.5 52.02 0.65 -91 51.23 29.55

4 222.8 67.46 0.8 -135 45.13 37.95
MNIST3

i = 784, o = 1, l = 2, n = 1000
1 Timeout 0.0486 0 [0.7788, 1.2575] 9.5771 0 [0.9060, 1.1409] Timeout2 6.567 31.43

a i is the number of inputs, o is the number of outputs, l is the number of layers, n is the total number of neurons.
b T is the reachable set computation time, R is the time reduction in percentage, Output is the output reachable set.

Table II: Local adversarial robustness of MNIST networks. This experiment is done on a computer with following
configurations: Intel Core i7-6700 CPU @ 3.4GHz × 8 Processor, 62.8 GiB Memory, 64-bit Ubuntu 16.04.3 LTS OS

0 10 20 30
N

800

1000

1200

1400

1600

1800

2000

2200

R
T

Figure 11: Reachable set computation time (RT) (seconds)
for property φ1 on N2 9 network with different number
of cores (N). This experiment is done on a computer
with following configurations: Intel Xenon(R) CPU E5-2620
V4@2.10GHz × 32, 125.8 GiB Memory, 64-bit Ubuntu
16.04.5 LTS OS.

architectures using the well-known MNIST data set [14]
with an accuracy of 95%. The MNIST data set consists
of 60000 images of handwritten digits with a resolution of
28× 28 pixels. The trained networks have 784 inputs and 1
output. We verify the local adversarial robustness of trained
networks on an image of the digit one with the assumption
that there is an adversarial attack on a set of pixels of the
image. The attack modifies the (normalized) values of the
input vector x at these pixels i by some bounded disturbance
δ, i.e., |x[i]− x′[i]| ≤ δ.

The robustness verification results are demonstrated in
Table II with assumption that there are 7 pixels attacked with
the bounded disturbance δ = 0.7. The results demonstrate
that the computation times of the exact and mixing schemes
are reduced significantly with parallel computing. The more
cores we use, the more the computation time is reduced.
For the lazy-approximate scheme, parallel computing does
not help much since there is only one input set (a hyper-
rectangle) for all layers in computation. Notably, for the
MNIST1 and MNIST2 networks, using parallel comput-
ing takes more time than a single core. This is because the
time for opening a new parallel pool in Matlab dominates

the computation time. We can see that the lazy-approximate
scheme and its combination with input partition are much
faster than the exact and the mixing schemes. However,
the computed output reachable sets are much more con-
servative when dealing with deep networks, i.e., MNIST1
and MNIST2. While the exact scheme can prove that
the MNIST1 and MNIST2 networks are robust since
the computed outputs are close to 1, the lazy-approximate
scheme and its combination with input partitioning and the
mixing scheme cannot. The mixing scheme displays its
benefit in the case of MNIST2 where it is much faster than
the exact scheme while still can prove the robustness of the
network. For the MNIST3 network, the exact and mixing
scheme reach the time limitation for computation which is
set 10 minutes. In this case, the lazy-approximate scheme
and its combination with input partition show their strengths
by being able to prove the robustness of the networks with
very small computation times.

VI. RELATED WORK

Neural network verification has attracted significant at-
tention in numerous research communities such as formal
methods, computer vision, machine learning, and security. In
recent years, several verification methods and software tools
have been proposed for verifying the adversarial robustness
and safety of DNNs. Within neural network verification
there are two main approaches. The first technique is the
exact approach that explicitly analyzes the behavior of neural
networks. Typically these techniques consist of an exact
reachable set computation for FNNs [9] or SMT-solver
based approaches [7], [15]. The second set of techniques are
the over-approximation approaches that typically perform
reachable set estimation using zonotopes [10], symbolic
intervals [16], simulation-based approximation [17] and fast
computation of certified robustness for networks employing
the use of ReLUs [18].

Our proposed exact scheme lies in the first approaches.
Unlike the SMT-solver based approaches, the exact scheme
rigorously computes the reachable set of a neural network
and thus can visualize the behavior of the network. The main
difference between our exact scheme and the one proposed
in [9] is that our exact scheme computes the reachable set
of FNNs by performing a sequence of stepReLU operations

which is more efficiently executed on parallel platforms.
Therefore, our exact-scheme can be sped-up significantly
on a multi-core computer or clusters. We also note that
the SMT-based approach was not designed to work in
parallel. Our lazy-approximate and mixing schemes are
over-approximation approaches. The conservativeness of our
over-approximation schemes are evaluated by comparing the
over-approximate reachable set with the exact one. Using the
exact scheme, evaluating the conservativeness of the existing
over-approximation techniques [10], [16], [18] is feasible
and will be worth consideration in the our future work.

VII. CONCLUSION

In this paper, we have proposed three parallel-computing
based reachability analysis schemes for FNNs with ReLU
activation functions. From thorough experiments, we have
shown that our methods are applicable to many practical
problems. The exact scheme has successfully verified safety
properties of the real-world ACAS Xu DNNs and can also
be used to verify the local adversarial robustness of image
classification DNNs. The lazy-approximate scheme and its
combination with the input partition technique are useful for
output range analysis of an FNN with one or two layers that
may consist of a huge number of neurons. We note that in
practice, there may be properties that cannot be verified by
only using the output range information, and hence, the exact
scheme is the only choice in this case. The mixing scheme
is suitable for output range analysis of DNNs since it is
faster than the exact scheme and produces less conservative
results than the lazy-approximate scheme. In future work,
we are going to extend the proposed reachability analysis
for FNN with nonlinear activation functions, recurrent neural
networks, and convolution neural networks.

ACKNOWLEDGMENTS

The material presented in this paper is based upon work
supported by the National Science Foundation (NSF) under
grant numbers CNS 1464311, CNS 1713253, SHF 1527398,
and SHF 1736323, the Air Force Office of Scientific Re-
search (AFOSR) through contract numbers FA9550-15-1-
0258, FA9550-16-1-0246, and FA9550-18-1-0122, and the
Defense Advanced Research Projects Agency (DARPA)
through contract number FA8750-18-C-0089. The U.S. gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of
AFOSR, DARPA, or NSF.

REFERENCES

[1] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. van der Laak, B. Van Ginneken, and
C. I. Sánchez, “A survey on deep learning in medical image
analysis,” Medical image analysis, vol. 42, pp. 60–88, 2017.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[3] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, pp. 11–26, 2017.

[4] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang et al., “End to end learning for self-driving cars,”
arXiv preprint arXiv:1604.07316, 2016.

[5] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep
neural network compression for aircraft collision avoidance
systems,” arXiv preprint arXiv:1810.04240, 2018.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deep-
fool: a simple and accurate method to fool deep neural net-
works,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2574–2582.

[7] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochen-
derfer, “Reluplex: An efficient smt solver for verifying deep
neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 97–117.

[8] P. S. Bradley and U. M. Fayyad, “Refining initial points for
k-means clustering.” in ICML, vol. 98. Citeseer, 1998, pp.
91–99.

[9] W. Xiang, H.-D. Tran, and T. T. Johnson, “Reachable set
computation and safety verification for neural networks with
relu activations,” arXiv preprint arXiv:1712.08163, 2017.

[10] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov,
S. Chaudhuri, and M. Vechev, “Ai 2: Safety and robustness
certification of neural networks with abstract interpretation,”
in Security and Privacy (SP), 2018 IEEE Symposium on,
2018.

[11] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari, “Multi-
parametric toolbox (mpt),” in International Workshop on
Hybrid Systems: Computation and Control. Springer, 2004,
pp. 448–462.

[12] S. Dutta, S. Jha, S. Sanakaranarayanan, and A. Tiwari, “Out-
put range analysis for deep neural networks,” arXiv preprint
arXiv:1709.09130, 2017.

[13] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” arXiv preprint arXiv:1312.6199, 2013.

[14] Y. LeCun, “The mnist database of handwritten digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[15] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety
verification of deep neural networks,” in International Con-
ference on Computer Aided Verification. Springer, 2017, pp.
3–29.

[16] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,”
arXiv preprint arXiv:1804.10829, 2018.

[17] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reach-
able set estimation and verification for multi-layer neural
networks,” arXiv preprint arXiv:1708.03322, 2017.

[18] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh,
D. Boning, I. S. Dhillon, and L. Daniel, “Towards fast
computation of certified robustness for relu networks,” arXiv
preprint arXiv:1804.09699, 2018.

	I Introduction
	II Preliminaries
	III Exact Reachability Analysis
	III-A stepReLU operation
	III-B Parallel-exact reachability analysis

	IV Approximate Reachability Analysis
	IV-A Lazy-approximate reachability analysis
	IV-B Mixing reachability analysis

	V Evaluation
	V-A Safety verification for ACAS Xu DNNs
	V-B Local adversarial robustness of DNNs

	VI Related Work
	VII Conclusion
	References

