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Abstract. Reinforcement Learning (RL) depends critically on how re-
ward functions are designed to capture intended behavior. However, tra-
ditional approaches are unable to represent temporal behavior, such as
“do task 1 before doing task 2.” In the event they can represent tempo-
ral behavior, these reward functions are handcrafted by researchers and
often require long hours of trial and error to shape the reward function
just right to get the desired behavior. In these cases, the desired behavior
is already known, the problem is generating a reward function to train
the RL agent to satisfy that behavior. To address this issue, we present
our approach for automatically converting timed and untimed specifica-
tions into a reward function, which has been implemented as the tool
STLGym. In this work, we show how STLGym can be used to train RL
agents to satisfy specifications better than traditional approaches and to
refine learned behavior to better match the specification.

Keywords: Deep Reinforcement Learning · Safe Reinforcement Learn-
ing · Signal Temporal Logic · Curriculum Learning.

1 Introduction

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) are fast-
growing fields with growing impact, spurred by success in training agents to beat
human experts in games like Go [23], Starcraft [25], and Gran Turismo [28]. These
results support the claims from [24] that “reward is enough to drive behavior
that exhibits abilities studied in natural and artificial intelligence.”

However, traditional reward functions are Markovian by nature; mapping
states, or states and actions, to scalar reward values without considering previous
states or actions [5]. This Markovian nature is in direct conflict with designing
reward functions that describe complex, temporally-extended behavior. For ex-
ample, the task of opening a freezer door, taking something out, and then closing
the freezer door cannot be represented by Markovian reward functions, because
the success of taking something out of the freezer is dependent on opening the
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freezer door first. This problem also extends to the context of safety-critical sys-
tems, where the desired behavior might include never entering some region or
responding to a situation within a specified amount of time.

Therefore, if we want to use RL and DRL to solve complex, temporally-
extended problems, we need a new way of writing and defining reward functions.
This is a challenging problem with growing interest as RL research looks into
new ways to formulate the reward function to solve these kinds of problems. The
most promising approaches look at using temporal logic to write specifications
describing the desired behavior, and then generating complex reward functions
that help agents learn to satisfy the specifications. Temporal logics are formalism
for specifying the desired behavior of systems that evolve over time [16]. Some
approaches, like the one presented in this work, take advantage of quantitative
semantics [1, 2, 14], while others construct reward machines that change how
the reward function is defined depending on which states have been reached
[5, 11–13].

Despite the many successes of these approaches, only one is able to incorpo-
rate timing constraints ([2]) and many only work with a few RL algorithms that
require researchers to write up the problem in a custom format to work with the
implementation provided. By ignoring timing constraints, the approaches leave
out reactive specifications where systems need to respond within a specified
amount of time, like in power systems.

Our contributions. In this work, we introduce our approach, and a tool im-
plementation, STLGym, for training RL agents to satisfy complex, temporally-
extended problems with and without timing constraints using RL. To the best
of our knowledge, and compared to related works discussed in Section 6, our
approach is the first that allows users to train agents to satisfy timed and un-
timed specifications, evaluate how well their agents satisfy those specifications,
and retrain agents that do not already satisfy the specifications. We demonstrate
the features of our tool and explore some best practices in five interesting exam-
ple case studies. Our results show STLGym is an effective tool for training RL
agents to satisfy a variety of timed and untimed temporal logic specifications.

2 Preliminaries

2.1 (Deep) Reinforcement Learning

Reinforcement Learning (RL) is a form of machine learning in which an agent
acts in an environment, learning through experience to increase its performance
based on rewarded behavior. Deep Reinforcement Learning (DRL) is a newer
branch of RL in which a neural network is used to approximate the behavior
function, i.e. policy π. The environment can be comprised of any dynamical
system, from video game simulations ([9, 25, 28]) to complex robotics scenarios
([4,8,17]). In this work, and to use our tool STLGym, the environment must be
constructed using OpenAI’s Gym API [4].

Reinforcement learning is based on the reward hypothesis that all goals can
be described by the maximization of expected return, i.e. the cumulative reward.
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During training, the agent chooses an action, u, based on the input observation,
o. The action is then executed in the environment, updating the internal state,
s, according to the plant dynamics. The agent then receives a scalar r, and the
next observation vector, o′. The process of executing an action and receiving a
reward and next observation is referred to as a timestep. Relevant values, like the
input observation, action, and reward are collected as a data tuple, i.e. sample,
by the RL algorithm to update the current policy, π, to an improved policy, π∗.
How often these updates are done is dependent on the RL algorithm.

The return is the sum of all rewards collected over the course of an episode.
An episode is a finite sequence of states, observations, actions, and rewards start-
ing from an initial state and ending when some terminal, i.e. done, conditions
are met. In this work, we refer to different elements of the episode by their cor-
responding timestep, t. Thus, rt is the reward value at timestep t ∈ [0, T ], where
T is the final timestep in the episode.

2.2 Signal Temporal Logic

Signal Temporal Logic (STL) was first introduced in [16] as an extension of
previous temporal logics that allows for formalizing control-theoretic properties,
properties of path-planning algorithms, and expressing timing constrains and
causality relations.

STL specifications are defined recursively according to the syntax :

ϕ := ψ|¬ϕ|ϕ ∧ φ|ϕ ∨ φ|F[a,b]ϕ|G[a,b]ϕ|ϕU[a,b]ψ, (1)

where a, b ∈ R≥0 are finite non-negative time bounds; ϕ and φ are STL formulae;
and ψ is a predicate in the form f(w) < d. In the predicate, w : R≥0 → Rn is a
signal, f : Rn → R is a function, and d ∈ R is a constant. The Boolean operators
¬, ∧, and ∨ are negation, conjunction, and disjunction respectively; and the
temporal operators F , G, and U refer to Finally (i.e. eventually), Globally (i.e.
always), and Until respectively. These temporal operators can be timed, having
time boundaries where the specification must be met, or untimed without strict
time boundaries.

wt denotes the value of w at time t and (w, t) is the part of the signal that
is a sequence of wt′ for t′ ∈ [t, |w|), where |w| is the end of the signal. The
propositional semantics of STL are recursively defined as follows:

(w, t) |= (f(w) < d) ⇔ f(wt) < d,

(w, t) |= ¬ϕ ⇔ ¬((w, t) |= ϕ),

(w, t) |= ϕ ∧ φ ⇔ (w, t) |= ϕ and (w, t) |= φ,

(w, t) |= ϕ ∨ φ ⇔ (w, t) |= ϕ or (w, t) |= φ,

(w, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (w, t′) |= ϕ,

(w, t) |= G[a,b]ϕ ⇔ (w, t′) |= ϕ ∀t′ ∈ [t+ a, t+ b],

(w, t) |= ϕU[a,b]φ ⇔ ∃tu ∈ [t+ a, t+ b) s.t. (w, tu) |= φ

∧ ∀t′ ∈ [t+ a, tu)(w, t
′) |= ϕ.
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For a signal (w, 0), i.e. the whole signal starting at time 0, satisfying the
timed predicate F[a,b]ϕ means that “there exists a time within [a, b] such that ϕ
will eventually be true”, and satisfying the timed predicate G[a,b]ϕ means that
“ϕ is true for all times between [a, b]”. Satisfying the timed predicate ϕU[a,b]φ
means “there exists a time within [a, b] such that φ will be true, and until then,
ϕ is true.” Satisfying the untimed predicates have the same description as their
timed counterpart, but with a = 0 and b = |w|.

Quantitative Semantics STL has a metric known as robustness degree or
“degree of satisfaction” that quantifies how well a given signal w satisfies a
given formula ϕ. The robustness degree is calculated recursively according to
the quantitative semantics:

ρ(w, (f(w) < d), t) = d− f(wt),

ρ(w,¬ϕ, t) = − ρ(w, ϕ, t),

ρ(w, (ϕ ∧ φ), t) = min
(
ρ(w, ϕ, t), ρ(w,φ, t)

)
,

ρ(w, (ϕ ∨ φ), t) = max
(
ρ(w, ϕ, t), ρ(w,φ, t)

)
,

ρ(w,F[a,b]ϕ, t) = max
t′∈[t+a,t+b]

ρ(w, ϕ, t′),

ρ(w,G[a,b]ϕ, t) = min
t′∈[t+a,t+b]

ρ(w, ϕ, t′),

ρ(w, ϕU[a,b]φ, t) = max
tu∈[t+a,t+b]

(
min{ρ(w,φ, tu), min

t′∈[t,tu)

(
ρ(w, ϕ, t′)

)
}
)
.

3 Examples

In the remaining sections, we will be referring to these two example RL en-
vironments, Pendulum and CartPole, in order to explain how STLGym works
and differs from other approaches. Fig. 1 shows annotated screenshots of the
simulated environments.

" * = sin "
) = c/0 "

"̇

(a) Pendulum-v0

, !

+

−4.8 2.4−2.4

. = 1. = 0

+̇
4.8

(b) CartPole-v0

Fig. 1. Annotated screenshots showing the simulated environments, Pendulum (left)
and CartPole (right), from the OpenAI Gym benchmarks [4].



STLGym 5

3.1 Pendulum

The Pendulum environment, shown in Fig. 1.a, consists of an inverted pendulum
attached to a fixed point on one side. The agent’s goal in this environment is to
swing the free end of the pendulum to an upright position, θ = 0, and maintain
the position.

The interior plant model changes the state, s = [θ, ω], according to the dis-
crete dynamics given the control from the RL agent, ut, in the range [−2, 2]
applied as a torque about the fixed end of the pendulum. Additionally, within
the environment the pendulum’s angular velocity, ω, is clipped within the range
[−8, 8], and the angle from upright, θ, is aliased within [−π, π] radians. θ is mea-
sured from upright and increases as the pendulum moves clockwise. The values
θ, ω, and u are used to determine the observation, o = [cos(θ), sin(θ), ω]T and
the reward,

rt = −θ2t − 0.1(ωt)
2 − 0.001(ut)

2. (2)

For each episode, the pendulum is initialized according to a uniform distri-
bution with θ ∈ [−π, π] and ω ∈ [−1, 1]. The episode ends when 200 timesteps
have occurred. That means T is always 200.

3.2 CartPole

In the CartPole environment1, a pole is attached to a cart moving along a fric-
tionless track. The agent’s goal in this environment is to keep the pole upright,
−12◦ ≤ θ ≤ 12◦, and the cart within the bounds −2.4 ≤ x ≤ 2.4 until the
time limit, t = 200, is reached. The agent accomplishes this goal by applying a
leftward or rightward force to move the cart along the track. The agent’s actions
are discretized for a “bang-bang” control architecture that moves the cart left
when u = 0 and right when u = 1.

The interior plant model changes the state, s = [x, ẋ, θ, θ̇], until a terminal
condition is met. These terminal conditions are: (1) the cart’s position leaves the
bounds −2.4 ≤ x ≤ 2.4, (2) the pole’s angle is outside the bounds −12◦ ≤ θ ≤
12◦, and/or (3) the goal time limit is reached, i.e. t = 200.

The original, baseline reward function with this environment gives the agent
+1 for every timestep the first two terminal conditions are not violated. Thus,
the return for an episode is the same as the episode’s length. To ensure the agent
has a chance to complete at least one timestep successfully, each state element is
initialized according to a uniform distribution in the range [−0.05, 0.05]. In this
implementation, the observation is equivalent to the state, o = s.

4 Our Approach: STLGym

Our approach focuses solely on augmenting the environment side of the RL
process to add an STL monitor and replace the existing reward output with the

1 The environment is based on the classic cart-pole system implemented for [3], where
more information on the dynamics can be found.
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Fig. 2. A representation of how STLGym wraps around the user’s environment to
record signals and replace the reward function.

calculated robustness degree as it relates to the desired specification(s), as shown
in Fig. 2. This process maintains the standards of the Gym API, so no changes
to the RL algorithm are necessary to facilitate its use. As a result, our approach
is algorithm-agnostic, since no modifications to the RL algorithm are required.
Furthermore, since our approach makes use of existing environments, there is
great potential for retraining learned policies to better optimize satisfying spec-
ifications. Our approach is implemented as the tool STLGym2

To use the tool, a user provides a YAML file that defines the variable(s) that
need to be recorded for the multivariate signal, w, and the specification(s) that
the signal needs to satisfy. Additionally, the user must provide the underlying
Gym environment that will be augmented. Provided these two inputs, STLGym
generates a new Gym environment where the specified variables are recorded so
RTAMT can monitor the defined STL specification and return the robustness
degree as the reward function.

4.1 Computing the Robustness Degree

To compute the robustness degree, we make use of RTAMT [19], a tool for
monitoring STL specifications on recorded data. Given the recorded signal and
specification, RTAMT computes the robustness degree according to the quan-
titative semantics described in Section 2.2. Whenever the robustness degree is
calculated, it covers the full episode from time 0 to t.

4.2 Allowable Specifications

Our approach is amenable to a wide range of specifications and supports the
full range of semantics described in Section 2.2 in addition to any described in

2 STLGym implementation is available at https://github.com/nphamilton/stl-gym

https://github.com/nphamilton/stl-gym
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RTAMT’s readme3. This includes both timed and untimed operators, adding
more options than allowed in a similar tool Truncated Linear Temporal Logic
TLTL [14]. Furthermore, our approach allows for specifications to be broken
up into individual parts. For example, consider the Cartpole example from Sec-
tion 3.2. The desired behavior (“Keep the pole upright between ±12◦ and the
cart within ±2.4 units”) can be written as

Φsingle = G((|θ| < 0.20944) ∧ (|x| < 2.4)) (3)

or it can be broken up into the individual components and combined with a
conjunction,

ϕangle = G(|θ| < 0.20944)

ϕposition = G(|x| < 2.4)

Φsplit = ϕangle ∧ ϕposition.
(4)

These specifications, Equation 3 and Equation 4, are equivalent and allowable in
both TLTL and STLGym. However, STLGym allows users to treat ϕangle and
ϕposition as individual specifications and automatically applies the conjunction.
Any number of individual specifications can be defined, and the resulting speci-
fication the RL agent will learn to satisfy is the conjunction of all of them. Thus,
if n specifications are provided, the RL agent will learn to satisfy

Φ =

n∧
i=0

ϕi. (5)

4.3 Calculating Reward

STLGym replaces any existing reward function in the environment with the
robustness degree calculated using the provided specification(s) and RTAMT. If
the user defines n specifications, ϕ0, ϕ1, ..., ϕn with corresponding weight values4,
c0, c1, ..., cn, the reward function is constructed as

rt =

n∑
i=0

ciρ(s, ϕi, 0). (6)

We include optional weights to add more versatility. This allows for users
to write specifications that build on each other, i.e. a specification is defined
using another specification, but remove one from the reward function if desired
by setting its weight to 0. Additionally, weights can help establish priorities in
learning specifications. For example, we go back to the CartPole specification
Equation 4. The reward function generated, according to the quantitative se-
mantics described in Section 2.2, for the specification is

rt = cangle min
t′∈[0,t]

(0.20944− |θt′ |) + cposition min
t′∈[0,t]

(2.4− |xt′ |). (7)

3 The RTAMT code is available at https://github.com/nickovic/rtamt
4 If a weight is not defined by the user, the default is 1.

https://github.com/nickovic/rtamt
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If both cangle = cposition = 1, then the maximum possible reward for satisfying
both specifications is 2.60944. However, because the environment was designed
to terminate if either specification is violated, if the agent only satisfies ϕposition
and lets the pole fall, the maximum possible reward is 2.4. Since the gain from
keeping the pole upright is so small, it could be ignored. In contrast, if we make
the weights cangle = 4.7746 and cposition = 0.41666, then the maximum possible
reward for satisfying both specifications is 2. If either of the specifications are
ignored, the maximum possible reward drops to 1. Thus, we have enforced equal
priority for satisfying the specifications.

Dense vs Sparse In addition to adding optional weights for each specification,
STLGym allows users to specify if the reward function should be calculated
densely or sparsely. This design decision was spurred on by the existing RL
literature, where there are two main types of rewards utilized: dense and sparse.
In the literature, dense rewards are returned at every timestep and are often
a scalar representation of the agent’s progresses toward the goal. For example,
the baseline reward function in the Pendulum environment (Equation 2) is a
dense reward. In contrast, sparse rewards are not returned at each timestep, but
instead are only returned if certain conditions are met. For example, an agent
receiving +1 for passing a checkpoint would be considered a sparse reward. Each
of these reward types have their advantages for different tasks and algorithms.
However, we make use of these terms to make our own definitions of dense and
sparse reward as they relate to frequency.

Definition 1 (Dense Reward). When using the dense reward, the robust-
ness degree is computed at every allowable timestep. Thus, at each timestep, the
reward returned to the agent is the robustness degree of the episode from the
beginning to the current time step.

Definition 2 (Sparse Reward). When using the sparse reward, the robustness
degree is only computed once at the end of the episode. In all timesteps before
that, the reward is 0. Thus, the return is the robustness degree for the entire
episode.

From our experiments, we found using dense rewards trained agents to satisfy
the specification with fewer timesteps, while the sparse reward was better for
evaluating their performance and understanding if they have successfully learned
to satisfy the specification or not. An example is provided in Section 5.1.

5 Example Case Studies

In this section, we describe 5 case studies we conducted using the environments
described in Section 35. In all of our case studies, we use the Proximal Policy

5 All training scripts are available at https://github.com/nphamilton/spinningup/
tree/master/spinup/examples/sefm2022

https://github.com/nphamilton/spinningup/tree/master/spinup/examples/sefm2022
https://github.com/nphamilton/spinningup/tree/master/spinup/examples/sefm2022
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Optimization (PPO) [22] algorithm for training, unless otherwise specified. These
case studies were designed to highlight features of STLGym and try to identify
some potential “best practices” for future use in other environments.

5.1 Sparse vs Dense Reward

In this case study, we demonstrate why having the ability to swap between
sparse and dense versions of our STL reward function is important. To this end,
we train 30 agents in the pendulum environment from Section 3.1 to swing the
pendulum upright and stay upright. Written as an STL specification, that is

Φ = F (G((|θ| < 0.5))). (8)

Ten agents are trained using the baseline reward function (Equation 2), ten
agents are trained with the sparse version of our STL reward function, and ten
agents are trained with the dense version of our STL reward function. Using the
quantitative semantics from Section 2.2, our tool automatically generates the
reward function,

rt = max
t′∈[0,t]

(
min

t′′∈[t′,t]
(0.5− |θt′′ |)

)
. (9)

(a) Sample complexity of PPO agents
trained in the Pendulum environment.
The return is calculated using Equa-
tion 2.

(b) Sample complexity of PPO agents
trained in the Pendulum environment.
The return is calculated using Equa-
tion 9 defined sparsely.

Fig. 3. Plots comparing the sample complexity using PPO to train agents in the Pendu-
lum environment using three reward functions: (baseline) the baseline reward function,
Equation 2; (sparse) the STLGym reward function, Equation 9, defined sparsely; and
(dense) the STLGym reward function defined densely. Each curve represents the aver-
age return from 10 agents trained the same way. The shaded region around each curve
shows the 95% confidence interval.

We show the sample complexity plots of training these 30 agents with the
3 different reward functions in Fig. 3. Sample complexity is a measure of how
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quickly an RL agent learns optimal performance. Throughout training, the pro-
cess is halted, and the agent is evaluated to see how well it performs with the
policy learned so far. The policy is evaluated in ten episodes, and the perfor-
mance, measured by the return, is recorded for the plot. A better sample com-
plexity is shown by a higher return earlier in training. In Fig. 3, we show sample
complexity measured by the (a) baseline reward function and (b) the sparse STL
reward function to highlight how the agents trained with the dense STL reward
have a better sample complexity than agents trained with the baseline reward
function even according to the baseline metric.

While the agents trained using the sparse STL reward function failed to
learn an optimal policy, using the sparse STL reward function for evaluating
performance was very beneficial. Using the dense reward function for evaluat-
ing performance is very similar to the baseline reward function, in that neither
provide any insight into whether or not the learned policy satisfies the desired
behavior. In contrast, using the sparse STL reward function in Fig. 3(b), we see
the exact point where the learned policies are successfully able to satisfy the
specification when the return is greater than 0.

5.2 STLGym is Algorithm-Agnostic

(a) Comparing multiple RL algorithms
using STLGym to learn the Pendulum
specification, Equation 8.

(b) Comparing the three options pre-
sented in Section 5.3 in the CartPole.

Fig. 4. These plots compare the sample complexity of agents trained using different
methods. Each curve represents the average of 10 trained agents, and the shaded region
shows the 95% confidence interval. In (b), the return is calculated using the sparse
definition of Φsplit (reward function represented by Equation 7) with cangle = 4.7746
and cposition = 0.41666 so the maximum possible return is 2.0.

In this case study, we demonstrate that our approach is algorithm-agnostic by
using multiple RL algorithms for the Pendulum example explained in Section 3.1.
All algorithms are used to learn the optimal policy for satisfying the specification



STLGym 11

in Equation 8. We demonstrate the following RL algorithms successfully learn-
ing to satisfy the specification using STLGym: Proximal Policy Optimization
(PPO) [22], Soft Actor-Critic (SAC) [7], and Twin Delayed Deep Deterministic
Policy Gradient (TD3) [6]. The sample complexity plot in Fig. 4(a) shows all RL
algorithms successfully learn to satisfy the specification. While the results sug-
gest SAC and TD3 work better with our STL reward function, these algorithms
are known to learn the optimal policy for this environment very quickly. More
examples, across different environments, are needed to make that claim.

5.3 On Separating Specifications and Scaling

The goal of the agent in the CartPole environment is to learn how to keep the
pole upright so the angle, θ, is between ±12◦ and the cart’s position, x remains
within the boundary of ±2.4 for 200 timesteps. As explained in Section 4.2, this
specification can be written as a singular specification, Equation 3, or as the
conjunction of individual components, Equation 4.

Using STL’s quantitative semantics, STLGym would generate the reward
function for Φsingle as

rt = min
t′∈[0,t]

(
min

(
(0.20944− |θt′ |), (2.4− |xt′ |)

))
. (10)

Similarly, STLGym would generate the reward function for Φsplit as Equation 7
In this case study, we look at how splitting up the specification into its indi-

vidual components creates a different reward function that impacts the training.
We compare the sample complexity of learning Φsingle against learning Φsplit

with and without weights. The results are shown in Fig. 4(b).
The results shown in Fig. 4(b) indicate splitting the specification is a hin-

drance for learning. The agents that were trained to satisfy Φsingle (single),
converged to a more optimal policy faster than both the weighted (stlgym) and
unweighted (split) options of Φsplit. We expect this is a direct result of trying
to satisfy Φsingle, where the robustness degree is always the worst-case of sat-
isfying both the angle and positions specifications. There is no credit awarded
for satisfying one better than the other, like in the Φsplit definition. We believe
that, while splitting the specification in this case study was more of a hindrance,
in more complicated systems with more specifications, splitting could be more
beneficial than shown here. In those cases, the option for weighting the individ-
ual specifications will be very helpful as the weighted and split option (stlgym),
which is only supported in STLGym, learned faster than and outperformed the
unweighted option.

5.4 Retraining With New Goal

There are many cases where the traditional reward functions successfully train
agents to complete the desired behavior, but we want to refine/improve/augment
that behavior to some other desired behavior. Instead of designing a new reward
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function and training a new agent from scratch, our tool can be leveraged to
retrain the agent to satisfy the new desired behavior. This also makes our tool
amenable to curriculum learning [26], an RL training strategy that trains agents
in progressively harder environments or constraints. Similar to a learning cur-
riculum used to teach students in a class, by starting with easier constraints and
building upon what is learned from the easier tasks, the agent is better able to
learn more complex behaviors.

In this case study, we look at an example with the CartPole environment
described in Section 3.2. The baseline reward function trains agents to keep
the pole upright very efficiently, but as [2] point out in their work, many of
the learned policies are unstable. When they evaluated the policies for longer
than 200 timesteps, they found many learned policies failed shortly after 200
timesteps. We saw similar results, which are shown in Fig. 5. To counteract
this issue, we retrain the agents to maximize the measured robustness of the
specifications

ϕposition = F (G(|x| < 0.5)), and

ϕangle = F (G(|θ| < 0.0872665)).
(11)

In plain English, the specifications translate to “eventually the cart will always
be within ±0.5 units of the center of the track” and “eventually, the pole’s angle
will always be within ±5◦.”6

(a) 10 example episodes where the
policy learned using the baseline
reward function is stable.

(b) 10 example episodes where the
policy learned using the baseline
reward function is unstable.

Fig. 5. These plots show recorded episodes of trained policies evaluated in the CartPole
environment. The red marks the region outside the specification and the horizontal
green lines mark the goal during training at 200, and the goal at evaluation 500.
In (a) we see the agent trained with the baseline reward function learned a stable
policy and retraining with STLGym is able to further refine the learned policy to
maximize the distance to the red region. In (b) we see the agent trained with the
baseline reward learned an unstable policy, but after retraining with STLGym, the
learned policy becomes stable.

6 These specifications came from [2].
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(a) Two recorded episodes of one
trained policy.

(b) Two recorded episodes of a dif-
ferent trained policy.

Fig. 6. Episodes of policies trained to satisfy the timed specification in Equation 12.

After some retraining, Fig. 5 shows the retrained policies converged to more
stable and consistent behavior. In particular, Fig. 5.b shows our approach cor-
rects the unstable behavior.

5.5 Learning a Timed Specification

In this case study, we look at one of the features of our tool that sets it apart
from almost all existing approaches in the literature—the ability to learn timed
specifications. Here we return to the Pendulum environment described in Sec-
tion 3.1. This time, the specification is “eventually the angle will be between
±45◦ for 10 timesteps.” In STL, the desired behavior is written as,

Φ = F (G[0:10](|θ| < 0.5)). (12)

And is converted by our tool to the reward function,

rt = max
t′∈[0,t]

(
min

t′′∈[t′,t′+10]
(0.5− |θt′′ |)

)
. (13)

The results of learning the specification in Equation 12 are highlighted in
Fig. 6 where we show a few example episodes. When we first wrote this specifi-
cation, we believed the resulting behavior would closely match that of the agents
in Section 5.1. Instead, the learned policies were more varied. Some stay close to
the upright position for longer than others, but they always return. We believe
this is a result of the circular state space, which puts the agent back in a starting
position after it moves away from upright. This result shows STLGym can suc-
cessfully train agents to satisfy timed specifications. However, it also highlights
a limitation of our approach: we have no way of overwriting the terminal condi-
tions. We would see more consistent results if we were able to stop the episode
once the specification was satisfied, but that is a feature left for future work.
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6 Related Work

Our work is not the first to use temporal logic specifications to create reward
functions. The previous works can be grouped into two categories, (1) quan-
titative semantics and (2) reward machines. We describe the related works in
greater detail below and provide a general comparison of our approach with oth-
ers in Table 1. The RL algorithms listed in Table 1 are the following: Augmented
Random Search (ARS) [17], Deep Deterministic Policy Gradient (DDPG) [15],
Deep Q-Learning (DQN) [18], Neural Fitted Q-iteration (NFQ) [21], Relative
Entropy Policy Search (REPS) [20], Q-Learning (Q) [27], and Twin Delayed
Deep Deterministic Policy Gradient (TD3) [6].

Table 1. A comparison of our tool to similar tools in the literature, separated by
category, filled in to the best of our knowledge. × indicates the feature is not supported,
✓ indicates the feature is supported, and ? indicates it should be supported, but we
cannot say so with confidence.

Name Env-API Sparse/Dense RL Algorithms Retraining Timed Sequential

TLTL [14] ? Dense REPS ? × ✓
BHNR [2] Custom Dense DQN, PPO ? ✓ ?

STLGym (ours) Gym Both Any ✓ ✓ ✓

QRM [11] Gym Both Q, DQN × × ✓
LCRL [10] Custom Both Q, DDPG, NFQ × × ✓

SPECTRL [12] Custom Dense ARS × × ✓
DIRL [13] Gym Dense ARS, TD3 × × ✓

6.1 Quantitative Semantics

The quantitative semantics category is where our work resides. These works,
[1, 2, 14], generate reward functions based on the quantitative semantics of the
temporal logics used to write the specifications the RL agents are tasked with
learning to satisfy. In Truncated Linear Temporal Logic (TLTL), presented in
[14], the authors create a new specification language, TLTL, that consciously
removes the time bounds from STL to only have untimed operators. They made
this decision, so specifications do not have to account for robotic limitations. In
contrast, our STLGym is designed to handle both timed and untimed specifica-
tions, thus handling all TLTL problems and more.

Another work, [2], uses timed and untimed STL specifications similar to
our STLGym. Their approach, Bounded Horizon Nominal Robustness (BHNR),
computes a normalized robustness value over bounded horizons, i.e. small seg-
ments, of the episode, creating a reward vector. By only analyzing the robust-
ness over smaller segments of the episode, their approach is able to speed up
the robustness degree calculation for dense reward computation. However, be-
cause only a small portion of the episode is analyzed, their approach cannot be
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used to determine the robustness degree across an entire episode like our sparse
reward function is able to do. Additionally, their implementation limits user’s
specifications to be defined only by variables in the environment’s observation
space. Thus, their tool cannot train our pendulum example without re-writing
to specification in terms of x and y instead of θ.

6.2 Reward Machines

Reward machine approaches, [5,11–13], use finite state automata (FSA) to han-
dle context switching in the reward function. Temporal logic specifications are
used to generate FSA that monitor the episode for satisfaction. Additionally,
depending on which state of the FSA is in, the reward function changes in order
to guide the agent towards satisfying the next specification. This approach is op-
timal for solving sequential tasks because it allows the user to specify ”go to the
fridge; open the door; take something out; close the door; return to home” and
the reward function changes depending on which part of the task is being done.
To the best of our knowledge, however, none of these approaches can handle
timed specifications yet.

7 Conclusions and Future Work

This paper presents our tool, STLGym, for training agents to satisfy timed and
untimed STL specifications using RL. To demonstrate the features of our tool
and explore some best practices for learning to satisfy STL specifications, we
trained over 130 different RL agents in our 5 case studies. From these case stud-
ies we observed (1) RL agents learned STLGym’s dense rewards better than
sparse rewards, (2) STLGym is algorithm-agnostic and works with any RL algo-
rithm designed to integrate with Gym environments, (3) leaving specifications
combined is better for RL agents than splitting them into individual parts, (4)
STLGym is effective for retraining RL agents to better satisfy specifications, and
(5) STLGym is effective for training RL agents to satisfy timed STL specifica-
tions.

In future work, we hope to expand to other, more complicated environments
and explore more scenarios with timed specifications. Additionally, we would
like to explore how STLGym can be leveraged more effectively for curriculum
learning.
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